Probabilistic properties of second order branching process

The classical BGW process assumes first order dependence, whereas many real life datasets exhibit a second or higher order dependence. Further, in some situations, there is a need for a model which allows for simultaneous reproduction by a parent and its offspring. This paper proposes a second order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2015-06, Vol.67 (3), p.557-572
Hauptverfasser: Kashikar, Akanksha S., Deshmukh, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 3
container_start_page 557
container_title Annals of the Institute of Statistical Mathematics
container_volume 67
creator Kashikar, Akanksha S.
Deshmukh, S. R.
description The classical BGW process assumes first order dependence, whereas many real life datasets exhibit a second or higher order dependence. Further, in some situations, there is a need for a model which allows for simultaneous reproduction by a parent and its offspring. This paper proposes a second order branching process model to accommodate such situations and discusses its probabilistic properties such as extinction probability and limiting behaviour of the generation sizes. Estimation of offspring means and growth rate are also discussed. This model is further used to model the swine flu data for Pune, India, and La-Gloria, Mexico.
doi_str_mv 10.1007/s10463-014-0462-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685800284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3664969831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-41535c1258e1223347981a4ca894deee3e237baddc707b27b91ced9397eda4b43</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouH78AG8FL16ik69N600Wv2BBD3oOaTq7duk2a6Z78N-bUg8ieJpheN53Zl7GLgRcCwB7QwL0XHEQmudGcjhgM2Gs5BUYechmABK4ypNjdkK0AQAllZyx29cUa1-3XUtDG4pdijtMQ4tUxFVBGGLfFDE1mIo6-T58tP16hAISnbGjle8Iz3_qKXt_uH9bPPHly-Pz4m7Jg7LzgWthlAlCmhKFlEppW5XC6-DLSjeIqFAqW_umCRZsLW1diYBNpSqLjde1VqfsavLNez_3SIPbthSw63yPcU9OzEtT5v_KEb38g27iPvX5ukxZYypQ1mZKTFRIkSjhyu1Su_XpywlwY5puStPlNN2YpoOskZOGMtuvMf1y_lf0DUwOdjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675590377</pqid></control><display><type>article</type><title>Probabilistic properties of second order branching process</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kashikar, Akanksha S. ; Deshmukh, S. R.</creator><creatorcontrib>Kashikar, Akanksha S. ; Deshmukh, S. R.</creatorcontrib><description>The classical BGW process assumes first order dependence, whereas many real life datasets exhibit a second or higher order dependence. Further, in some situations, there is a need for a model which allows for simultaneous reproduction by a parent and its offspring. This paper proposes a second order branching process model to accommodate such situations and discusses its probabilistic properties such as extinction probability and limiting behaviour of the generation sizes. Estimation of offspring means and growth rate are also discussed. This model is further used to model the swine flu data for Pune, India, and La-Gloria, Mexico.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-014-0462-0</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Age ; Branching (mathematics) ; Constraining ; Economics ; Finance ; Insurance ; Management ; Markov analysis ; Markov processes ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Parents ; Probabilistic methods ; Probability ; Probability theory ; Random variables ; Reproduction ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2015-06, Vol.67 (3), p.557-572</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2014</rights><rights>The Institute of Statistical Mathematics, Tokyo 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-41535c1258e1223347981a4ca894deee3e237baddc707b27b91ced9397eda4b43</citedby><cites>FETCH-LOGICAL-c376t-41535c1258e1223347981a4ca894deee3e237baddc707b27b91ced9397eda4b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-014-0462-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-014-0462-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kashikar, Akanksha S.</creatorcontrib><creatorcontrib>Deshmukh, S. R.</creatorcontrib><title>Probabilistic properties of second order branching process</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>The classical BGW process assumes first order dependence, whereas many real life datasets exhibit a second or higher order dependence. Further, in some situations, there is a need for a model which allows for simultaneous reproduction by a parent and its offspring. This paper proposes a second order branching process model to accommodate such situations and discusses its probabilistic properties such as extinction probability and limiting behaviour of the generation sizes. Estimation of offspring means and growth rate are also discussed. This model is further used to model the swine flu data for Pune, India, and La-Gloria, Mexico.</description><subject>Age</subject><subject>Branching (mathematics)</subject><subject>Constraining</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parents</subject><subject>Probabilistic methods</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Reproduction</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhoMouH78AG8FL16ik69N600Wv2BBD3oOaTq7duk2a6Z78N-bUg8ieJpheN53Zl7GLgRcCwB7QwL0XHEQmudGcjhgM2Gs5BUYechmABK4ypNjdkK0AQAllZyx29cUa1-3XUtDG4pdijtMQ4tUxFVBGGLfFDE1mIo6-T58tP16hAISnbGjle8Iz3_qKXt_uH9bPPHly-Pz4m7Jg7LzgWthlAlCmhKFlEppW5XC6-DLSjeIqFAqW_umCRZsLW1diYBNpSqLjde1VqfsavLNez_3SIPbthSw63yPcU9OzEtT5v_KEb38g27iPvX5ukxZYypQ1mZKTFRIkSjhyu1Su_XpywlwY5puStPlNN2YpoOskZOGMtuvMf1y_lf0DUwOdjk</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Kashikar, Akanksha S.</creator><creator>Deshmukh, S. R.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150601</creationdate><title>Probabilistic properties of second order branching process</title><author>Kashikar, Akanksha S. ; Deshmukh, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-41535c1258e1223347981a4ca894deee3e237baddc707b27b91ced9397eda4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Age</topic><topic>Branching (mathematics)</topic><topic>Constraining</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parents</topic><topic>Probabilistic methods</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Reproduction</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashikar, Akanksha S.</creatorcontrib><creatorcontrib>Deshmukh, S. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashikar, Akanksha S.</au><au>Deshmukh, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic properties of second order branching process</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>67</volume><issue>3</issue><spage>557</spage><epage>572</epage><pages>557-572</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>The classical BGW process assumes first order dependence, whereas many real life datasets exhibit a second or higher order dependence. Further, in some situations, there is a need for a model which allows for simultaneous reproduction by a parent and its offspring. This paper proposes a second order branching process model to accommodate such situations and discusses its probabilistic properties such as extinction probability and limiting behaviour of the generation sizes. Estimation of offspring means and growth rate are also discussed. This model is further used to model the swine flu data for Pune, India, and La-Gloria, Mexico.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-014-0462-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-3157
ispartof Annals of the Institute of Statistical Mathematics, 2015-06, Vol.67 (3), p.557-572
issn 0020-3157
1572-9052
language eng
recordid cdi_proquest_miscellaneous_1685800284
source EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Age
Branching (mathematics)
Constraining
Economics
Finance
Insurance
Management
Markov analysis
Markov processes
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Parents
Probabilistic methods
Probability
Probability theory
Random variables
Reproduction
Statistics
Statistics for Business
Studies
title Probabilistic properties of second order branching process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20properties%20of%20second%20order%20branching%20process&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Kashikar,%20Akanksha%20S.&rft.date=2015-06-01&rft.volume=67&rft.issue=3&rft.spage=557&rft.epage=572&rft.pages=557-572&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-014-0462-0&rft_dat=%3Cproquest_cross%3E3664969831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675590377&rft_id=info:pmid/&rfr_iscdi=true