A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing
A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25, 2015 ). Aspects of the numerical implementation of the aforementioned theory using the finite element meth...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2015-04, Vol.55 (4), p.755-769 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 769 |
---|---|
container_issue | 4 |
container_start_page | 755 |
container_title | Computational mechanics |
container_volume | 55 |
creator | McBride, A. Bargmann, S. Reddy, B. D. |
description | A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25,
2015
). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work. |
doi_str_mv | 10.1007/s00466-015-1134-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685798623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A425893316</galeid><sourcerecordid>A425893316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-416ad3df2f8274bd6480399460b05aa8bb8f438a74a1ed9b5b4abea6a705c6a53</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEpfCA7DzEhZp7fgnzvKqglKpUiV-1tbEdoKLY19sB7jPwsviEDbdoFl4PPrOGVunaV4TfEkw7q8yxkyIFhPeEkJZy580B8Jo1-KhY0-bAya9bHvR8-fNi5wfcAUl5Yfm9xHpuJzWAsXFAB658MPm4ua_dxQnBGiJxvqtzS7M3rY6nXOp6JzAOBsKKl9tWuLJQxVqV851AAWB1nENJaMppg1BucRkDbLBpvm8-enoDfoZ0zcEwewu1RZCsODrqpfNswl8tq_-nRfNl_fvPl9_aO_ub26vj3etpgMrLSMCDDVTN8muZ6MRTGI6DEzgEXMAOY5yYlRCz4BYM4x8ZDBaENBjrgVwetG82X1PKX5f6-_V4rK23kOwcc2KCMn7QYqOVvRyR2fwVrkwxZJA1zJ2cToGO7k6P7KOy4FSIqrg7SNBZYr9VWZYc1a3nz4-ZsnO6hRzTnZSp-QWSGdFsNpSVnvKqoantpTV9vZu1-TKhtkm9RDXVIPM_xH9AXKxrSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685798623</pqid></control><display><type>article</type><title>A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing</title><source>SpringerNature Journals</source><creator>McBride, A. ; Bargmann, S. ; Reddy, B. D.</creator><creatorcontrib>McBride, A. ; Bargmann, S. ; Reddy, B. D.</creatorcontrib><description>A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25,
2015
). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-015-1134-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annealing ; Classical and Continuum Physics ; Cold storage ; Cold working ; Computational Science and Engineering ; Engineering ; Evolution ; Internal energy ; Investigations ; Mathematical analysis ; Mathematical models ; Original Paper ; Theoretical and Applied Mechanics ; Thermoplasticity</subject><ispartof>Computational mechanics, 2015-04, Vol.55 (4), p.755-769</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-416ad3df2f8274bd6480399460b05aa8bb8f438a74a1ed9b5b4abea6a705c6a53</citedby><cites>FETCH-LOGICAL-c394t-416ad3df2f8274bd6480399460b05aa8bb8f438a74a1ed9b5b4abea6a705c6a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-015-1134-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-015-1134-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>McBride, A.</creatorcontrib><creatorcontrib>Bargmann, S.</creatorcontrib><creatorcontrib>Reddy, B. D.</creatorcontrib><title>A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25,
2015
). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work.</description><subject>Annealing</subject><subject>Classical and Continuum Physics</subject><subject>Cold storage</subject><subject>Cold working</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Internal energy</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermoplasticity</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEEpfCA7DzEhZp7fgnzvKqglKpUiV-1tbEdoKLY19sB7jPwsviEDbdoFl4PPrOGVunaV4TfEkw7q8yxkyIFhPeEkJZy580B8Jo1-KhY0-bAya9bHvR8-fNi5wfcAUl5Yfm9xHpuJzWAsXFAB658MPm4ua_dxQnBGiJxvqtzS7M3rY6nXOp6JzAOBsKKl9tWuLJQxVqV851AAWB1nENJaMppg1BucRkDbLBpvm8-enoDfoZ0zcEwewu1RZCsODrqpfNswl8tq_-nRfNl_fvPl9_aO_ub26vj3etpgMrLSMCDDVTN8muZ6MRTGI6DEzgEXMAOY5yYlRCz4BYM4x8ZDBaENBjrgVwetG82X1PKX5f6-_V4rK23kOwcc2KCMn7QYqOVvRyR2fwVrkwxZJA1zJ2cToGO7k6P7KOy4FSIqrg7SNBZYr9VWZYc1a3nz4-ZsnO6hRzTnZSp-QWSGdFsNpSVnvKqoantpTV9vZu1-TKhtkm9RDXVIPM_xH9AXKxrSE</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>McBride, A.</creator><creator>Bargmann, S.</creator><creator>Reddy, B. D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150401</creationdate><title>A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing</title><author>McBride, A. ; Bargmann, S. ; Reddy, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-416ad3df2f8274bd6480399460b05aa8bb8f438a74a1ed9b5b4abea6a705c6a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Annealing</topic><topic>Classical and Continuum Physics</topic><topic>Cold storage</topic><topic>Cold working</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Internal energy</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBride, A.</creatorcontrib><creatorcontrib>Bargmann, S.</creatorcontrib><creatorcontrib>Reddy, B. D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBride, A.</au><au>Bargmann, S.</au><au>Reddy, B. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>55</volume><issue>4</issue><spage>755</spage><epage>769</epage><pages>755-769</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25,
2015
). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-015-1134-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2015-04, Vol.55 (4), p.755-769 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685798623 |
source | SpringerNature Journals |
subjects | Annealing Classical and Continuum Physics Cold storage Cold working Computational Science and Engineering Engineering Evolution Internal energy Investigations Mathematical analysis Mathematical models Original Paper Theoretical and Applied Mechanics Thermoplasticity |
title | A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20investigation%20of%20a%20model%20of%20single-crystal%20gradient%20thermoplasticity%20that%20accounts%20for%20the%20stored%20energy%20of%20cold%20work%20and%20thermal%20annealing&rft.jtitle=Computational%20mechanics&rft.au=McBride,%20A.&rft.date=2015-04-01&rft.volume=55&rft.issue=4&rft.spage=755&rft.epage=769&rft.pages=755-769&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-015-1134-5&rft_dat=%3Cgale_proqu%3EA425893316%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685798623&rft_id=info:pmid/&rft_galeid=A425893316&rfr_iscdi=true |