A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing

A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25, 2015 ). Aspects of the numerical implementation of the aforementioned theory using the finite element meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2015-04, Vol.55 (4), p.755-769
Hauptverfasser: McBride, A., Bargmann, S., Reddy, B. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 769
container_issue 4
container_start_page 755
container_title Computational mechanics
container_volume 55
creator McBride, A.
Bargmann, S.
Reddy, B. D.
description A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25, 2015 ). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work.
doi_str_mv 10.1007/s00466-015-1134-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685798623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A425893316</galeid><sourcerecordid>A425893316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-416ad3df2f8274bd6480399460b05aa8bb8f438a74a1ed9b5b4abea6a705c6a53</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEpfCA7DzEhZp7fgnzvKqglKpUiV-1tbEdoKLY19sB7jPwsviEDbdoFl4PPrOGVunaV4TfEkw7q8yxkyIFhPeEkJZy580B8Jo1-KhY0-bAya9bHvR8-fNi5wfcAUl5Yfm9xHpuJzWAsXFAB658MPm4ua_dxQnBGiJxvqtzS7M3rY6nXOp6JzAOBsKKl9tWuLJQxVqV851AAWB1nENJaMppg1BucRkDbLBpvm8-enoDfoZ0zcEwewu1RZCsODrqpfNswl8tq_-nRfNl_fvPl9_aO_ub26vj3etpgMrLSMCDDVTN8muZ6MRTGI6DEzgEXMAOY5yYlRCz4BYM4x8ZDBaENBjrgVwetG82X1PKX5f6-_V4rK23kOwcc2KCMn7QYqOVvRyR2fwVrkwxZJA1zJ2cToGO7k6P7KOy4FSIqrg7SNBZYr9VWZYc1a3nz4-ZsnO6hRzTnZSp-QWSGdFsNpSVnvKqoantpTV9vZu1-TKhtkm9RDXVIPM_xH9AXKxrSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685798623</pqid></control><display><type>article</type><title>A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing</title><source>SpringerNature Journals</source><creator>McBride, A. ; Bargmann, S. ; Reddy, B. D.</creator><creatorcontrib>McBride, A. ; Bargmann, S. ; Reddy, B. D.</creatorcontrib><description>A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25, 2015 ). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-015-1134-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annealing ; Classical and Continuum Physics ; Cold storage ; Cold working ; Computational Science and Engineering ; Engineering ; Evolution ; Internal energy ; Investigations ; Mathematical analysis ; Mathematical models ; Original Paper ; Theoretical and Applied Mechanics ; Thermoplasticity</subject><ispartof>Computational mechanics, 2015-04, Vol.55 (4), p.755-769</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-416ad3df2f8274bd6480399460b05aa8bb8f438a74a1ed9b5b4abea6a705c6a53</citedby><cites>FETCH-LOGICAL-c394t-416ad3df2f8274bd6480399460b05aa8bb8f438a74a1ed9b5b4abea6a705c6a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-015-1134-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-015-1134-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>McBride, A.</creatorcontrib><creatorcontrib>Bargmann, S.</creatorcontrib><creatorcontrib>Reddy, B. D.</creatorcontrib><title>A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25, 2015 ). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work.</description><subject>Annealing</subject><subject>Classical and Continuum Physics</subject><subject>Cold storage</subject><subject>Cold working</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Internal energy</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermoplasticity</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEEpfCA7DzEhZp7fgnzvKqglKpUiV-1tbEdoKLY19sB7jPwsviEDbdoFl4PPrOGVunaV4TfEkw7q8yxkyIFhPeEkJZy580B8Jo1-KhY0-bAya9bHvR8-fNi5wfcAUl5Yfm9xHpuJzWAsXFAB658MPm4ua_dxQnBGiJxvqtzS7M3rY6nXOp6JzAOBsKKl9tWuLJQxVqV851AAWB1nENJaMppg1BucRkDbLBpvm8-enoDfoZ0zcEwewu1RZCsODrqpfNswl8tq_-nRfNl_fvPl9_aO_ub26vj3etpgMrLSMCDDVTN8muZ6MRTGI6DEzgEXMAOY5yYlRCz4BYM4x8ZDBaENBjrgVwetG82X1PKX5f6-_V4rK23kOwcc2KCMn7QYqOVvRyR2fwVrkwxZJA1zJ2cToGO7k6P7KOy4FSIqrg7SNBZYr9VWZYc1a3nz4-ZsnO6hRzTnZSp-QWSGdFsNpSVnvKqoantpTV9vZu1-TKhtkm9RDXVIPM_xH9AXKxrSE</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>McBride, A.</creator><creator>Bargmann, S.</creator><creator>Reddy, B. D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150401</creationdate><title>A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing</title><author>McBride, A. ; Bargmann, S. ; Reddy, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-416ad3df2f8274bd6480399460b05aa8bb8f438a74a1ed9b5b4abea6a705c6a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Annealing</topic><topic>Classical and Continuum Physics</topic><topic>Cold storage</topic><topic>Cold working</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Internal energy</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBride, A.</creatorcontrib><creatorcontrib>Bargmann, S.</creatorcontrib><creatorcontrib>Reddy, B. D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBride, A.</au><au>Bargmann, S.</au><au>Reddy, B. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>55</volume><issue>4</issue><spage>755</spage><epage>769</epage><pages>755-769</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25, 2015 ). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-015-1134-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2015-04, Vol.55 (4), p.755-769
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_miscellaneous_1685798623
source SpringerNature Journals
subjects Annealing
Classical and Continuum Physics
Cold storage
Cold working
Computational Science and Engineering
Engineering
Evolution
Internal energy
Investigations
Mathematical analysis
Mathematical models
Original Paper
Theoretical and Applied Mechanics
Thermoplasticity
title A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20investigation%20of%20a%20model%20of%20single-crystal%20gradient%20thermoplasticity%20that%20accounts%20for%20the%20stored%20energy%20of%20cold%20work%20and%20thermal%20annealing&rft.jtitle=Computational%20mechanics&rft.au=McBride,%20A.&rft.date=2015-04-01&rft.volume=55&rft.issue=4&rft.spage=755&rft.epage=769&rft.pages=755-769&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-015-1134-5&rft_dat=%3Cgale_proqu%3EA425893316%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685798623&rft_id=info:pmid/&rft_galeid=A425893316&rfr_iscdi=true