Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles--control of the intraparticle phase distribution
Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2015-05, Vol.7 (17), p.7734-7744 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7744 |
---|---|
container_issue | 17 |
container_start_page | 7734 |
container_title | Nanoscale |
container_volume | 7 |
creator | Stötzel, C Kurland, H-D Grabow, J Müller, F A |
description | Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis. |
doi_str_mv | 10.1039/c5nr00845j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685798598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1675875079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-5d9a75a2ad0397ca63228078eca571ad04b8e0d43e2a11e4ffac39e8cca9c5bd3</originalsourceid><addsrcrecordid>eNqNkU9LxDAQxYMo7rp68QNIjyJU06Zp0qMsuiqLgui5TNOpm6VtatKCgh_e1P1z9pRk3i9vmHmEnEf0OqIsu1G8tZTKhK8PyDSmCQ0ZE_Hh_p4mE3Li3JrSNGMpOyaTmEvGMxlNyc8CXNCtwGGgTFti66DXpg1MFbihQ9uBhQY-Wuy1CrQdlS9dYuh0rRUELbTGI16s0YWht-itqcff_QoD7V-wk7ddSu16q4th7HJKjiqoHZ5tzxl5v797mz-Ey5fF4_x2GSom0z7kZQaCQwyln1YoSFkcSyokKuAi8tWkkEjLhGEMUYRJVYFiGUqlIFO8KNmMXG58O2s-B3R93minsK6hRTO4PEolF5n0G_kHKrgUnIrMo1cbVFnjnMUq76xuwH7nEc3HYPI5f379C-bJwxdb36FosNyjuyTYLxI8jEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675875079</pqid></control><display><type>article</type><title>Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles--control of the intraparticle phase distribution</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Stötzel, C ; Kurland, H-D ; Grabow, J ; Müller, F A</creator><creatorcontrib>Stötzel, C ; Kurland, H-D ; Grabow, J ; Müller, F A</creatorcontrib><description>Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr00845j</identifier><identifier>PMID: 25835981</identifier><language>eng</language><publisher>England</publisher><subject>Condensing ; Droplets ; Inclusions ; Iron oxides ; Nanoparticles ; Nanostructure ; Sand ; Silicon dioxide</subject><ispartof>Nanoscale, 2015-05, Vol.7 (17), p.7734-7744</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-5d9a75a2ad0397ca63228078eca571ad04b8e0d43e2a11e4ffac39e8cca9c5bd3</citedby><cites>FETCH-LOGICAL-c386t-5d9a75a2ad0397ca63228078eca571ad04b8e0d43e2a11e4ffac39e8cca9c5bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25835981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stötzel, C</creatorcontrib><creatorcontrib>Kurland, H-D</creatorcontrib><creatorcontrib>Grabow, J</creatorcontrib><creatorcontrib>Müller, F A</creatorcontrib><title>Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles--control of the intraparticle phase distribution</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.</description><subject>Condensing</subject><subject>Droplets</subject><subject>Inclusions</subject><subject>Iron oxides</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Sand</subject><subject>Silicon dioxide</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU9LxDAQxYMo7rp68QNIjyJU06Zp0qMsuiqLgui5TNOpm6VtatKCgh_e1P1z9pRk3i9vmHmEnEf0OqIsu1G8tZTKhK8PyDSmCQ0ZE_Hh_p4mE3Li3JrSNGMpOyaTmEvGMxlNyc8CXNCtwGGgTFti66DXpg1MFbihQ9uBhQY-Wuy1CrQdlS9dYuh0rRUELbTGI16s0YWht-itqcff_QoD7V-wk7ddSu16q4th7HJKjiqoHZ5tzxl5v797mz-Ey5fF4_x2GSom0z7kZQaCQwyln1YoSFkcSyokKuAi8tWkkEjLhGEMUYRJVYFiGUqlIFO8KNmMXG58O2s-B3R93minsK6hRTO4PEolF5n0G_kHKrgUnIrMo1cbVFnjnMUq76xuwH7nEc3HYPI5f379C-bJwxdb36FosNyjuyTYLxI8jEc</recordid><startdate>20150507</startdate><enddate>20150507</enddate><creator>Stötzel, C</creator><creator>Kurland, H-D</creator><creator>Grabow, J</creator><creator>Müller, F A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150507</creationdate><title>Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles--control of the intraparticle phase distribution</title><author>Stötzel, C ; Kurland, H-D ; Grabow, J ; Müller, F A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-5d9a75a2ad0397ca63228078eca571ad04b8e0d43e2a11e4ffac39e8cca9c5bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensing</topic><topic>Droplets</topic><topic>Inclusions</topic><topic>Iron oxides</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Sand</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stötzel, C</creatorcontrib><creatorcontrib>Kurland, H-D</creatorcontrib><creatorcontrib>Grabow, J</creatorcontrib><creatorcontrib>Müller, F A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stötzel, C</au><au>Kurland, H-D</au><au>Grabow, J</au><au>Müller, F A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles--control of the intraparticle phase distribution</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-05-07</date><risdate>2015</risdate><volume>7</volume><issue>17</issue><spage>7734</spage><epage>7744</epage><pages>7734-7744</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.</abstract><cop>England</cop><pmid>25835981</pmid><doi>10.1039/c5nr00845j</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2015-05, Vol.7 (17), p.7734-7744 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685798598 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Condensing Droplets Inclusions Iron oxides Nanoparticles Nanostructure Sand Silicon dioxide |
title | Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles--control of the intraparticle phase distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20phase%20condensation%20of%20superparamagnetic%20iron%20oxide-silica%20nanoparticles--control%20of%20the%20intraparticle%20phase%20distribution&rft.jtitle=Nanoscale&rft.au=St%C3%B6tzel,%20C&rft.date=2015-05-07&rft.volume=7&rft.issue=17&rft.spage=7734&rft.epage=7744&rft.pages=7734-7744&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr00845j&rft_dat=%3Cproquest_cross%3E1675875079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675875079&rft_id=info:pmid/25835981&rfr_iscdi=true |