Tearing up a misaligned accretion disc with a binary companion

Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2015-05, Vol.449 (2), p.1251-1258
Hauptverfasser: Doğan, Suzan, Nixon, Chris, King, Andrew, Price, Daniel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 2
container_start_page 1251
container_title Monthly notices of the Royal Astronomical Society
container_volume 449
creator Doğan, Suzan
Nixon, Chris
King, Andrew
Price, Daniel J.
description Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X-ray binaries.
doi_str_mv 10.1093/mnras/stv347
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685797465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv347</oup_id><sourcerecordid>3657351601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-a1ffa17873c0e8796b5c4985bef911e43d233ef00071c32e0d3dc3c27c78cf013</originalsourceid><addsrcrecordid>eNqN0E1LxDAQBuAgCq6rN39AwYMerJt0kia5CLL4BQte1nPIpumapU1r0ir-e6P15EE8zWEehndehE4JviJYwqL1QcdFHN6A8j00I1CyvJBluY9mGAPLBSfkEB3FuMMYUyjKGbpeWx2c32Zjn-msdVE3buttlWljgh1c57PKRZO9u-ElgY3zOnxkpmt77dPyGB3Uuon25GfO0fPd7Xr5kK-e7h-XN6vcgJRDrklda8IFB4Ot4LLcMEOlYBtbS0IshaoAsHVKxYmBwuIKKgOm4IYLU2MCc3Qx3e1D9zraOKgU1dim0d52Y1SkFIxLTkv2H4opS1ImevaL7rox-PRIUhwEFJSKpC4nZUIXY7C16oNrUw2KYPXVu_ruXU29J34-8W7s_5afwLyDrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673832448</pqid></control><display><type>article</type><title>Tearing up a misaligned accretion disc with a binary companion</title><source>Oxford Journals Open Access Collection</source><creator>Doğan, Suzan ; Nixon, Chris ; King, Andrew ; Price, Daniel J.</creator><creatorcontrib>Doğan, Suzan ; Nixon, Chris ; King, Andrew ; Price, Daniel J.</creatorcontrib><description>Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X-ray binaries.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv347</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Accretion disks ; Angular momentum ; Astronomy ; Astrophysics ; Binary stars ; Binary systems ; Black holes ; Breaking ; Double stars ; Mathematical analysis ; Orbits ; Precession ; Simulation</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-05, Vol.449 (2), p.1251-1258</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK May 11, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-a1ffa17873c0e8796b5c4985bef911e43d233ef00071c32e0d3dc3c27c78cf013</citedby><cites>FETCH-LOGICAL-c399t-a1ffa17873c0e8796b5c4985bef911e43d233ef00071c32e0d3dc3c27c78cf013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv347$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Doğan, Suzan</creatorcontrib><creatorcontrib>Nixon, Chris</creatorcontrib><creatorcontrib>King, Andrew</creatorcontrib><creatorcontrib>Price, Daniel J.</creatorcontrib><title>Tearing up a misaligned accretion disc with a binary companion</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X-ray binaries.</description><subject>Accretion disks</subject><subject>Angular momentum</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Binary systems</subject><subject>Black holes</subject><subject>Breaking</subject><subject>Double stars</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Precession</subject><subject>Simulation</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LxDAQBuAgCq6rN39AwYMerJt0kia5CLL4BQte1nPIpumapU1r0ir-e6P15EE8zWEehndehE4JviJYwqL1QcdFHN6A8j00I1CyvJBluY9mGAPLBSfkEB3FuMMYUyjKGbpeWx2c32Zjn-msdVE3buttlWljgh1c57PKRZO9u-ElgY3zOnxkpmt77dPyGB3Uuon25GfO0fPd7Xr5kK-e7h-XN6vcgJRDrklda8IFB4Ot4LLcMEOlYBtbS0IshaoAsHVKxYmBwuIKKgOm4IYLU2MCc3Qx3e1D9zraOKgU1dim0d52Y1SkFIxLTkv2H4opS1ImevaL7rox-PRIUhwEFJSKpC4nZUIXY7C16oNrUw2KYPXVu_ruXU29J34-8W7s_5afwLyDrw</recordid><startdate>20150511</startdate><enddate>20150511</enddate><creator>Doğan, Suzan</creator><creator>Nixon, Chris</creator><creator>King, Andrew</creator><creator>Price, Daniel J.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20150511</creationdate><title>Tearing up a misaligned accretion disc with a binary companion</title><author>Doğan, Suzan ; Nixon, Chris ; King, Andrew ; Price, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-a1ffa17873c0e8796b5c4985bef911e43d233ef00071c32e0d3dc3c27c78cf013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accretion disks</topic><topic>Angular momentum</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Binary systems</topic><topic>Black holes</topic><topic>Breaking</topic><topic>Double stars</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Precession</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doğan, Suzan</creatorcontrib><creatorcontrib>Nixon, Chris</creatorcontrib><creatorcontrib>King, Andrew</creatorcontrib><creatorcontrib>Price, Daniel J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doğan, Suzan</au><au>Nixon, Chris</au><au>King, Andrew</au><au>Price, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tearing up a misaligned accretion disc with a binary companion</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2015-05-11</date><risdate>2015</risdate><volume>449</volume><issue>2</issue><spage>1251</spage><epage>1258</epage><pages>1251-1258</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. We calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. We run hydrodynamical simulations to check these results, and confirm that disc breaking is widespread and generally enhances accretion on to the central object. This applies in many cases of astrophysical accretion, e.g. supermassive black hole binaries and X-ray binaries.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv347</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-05, Vol.449 (2), p.1251-1258
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1685797465
source Oxford Journals Open Access Collection
subjects Accretion disks
Angular momentum
Astronomy
Astrophysics
Binary stars
Binary systems
Black holes
Breaking
Double stars
Mathematical analysis
Orbits
Precession
Simulation
title Tearing up a misaligned accretion disc with a binary companion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tearing%20up%20a%20misaligned%20accretion%20disc%20with%20a%20binary%20companion&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Do%C4%9Fan,%20Suzan&rft.date=2015-05-11&rft.volume=449&rft.issue=2&rft.spage=1251&rft.epage=1258&rft.pages=1251-1258&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv347&rft_dat=%3Cproquest_TOX%3E3657351601%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673832448&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv347&rfr_iscdi=true