use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms

Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London) 2015-05, Vol.24 (4), p.746-759
Hauptverfasser: Hasenbein, Simone, Lawler, Sharon P, Geist, Juergen, Connon, Richard E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue 4
container_start_page 746
container_title Ecotoxicology (London)
container_volume 24
creator Hasenbein, Simone
Lawler, Sharon P
Geist, Juergen
Connon, Richard E
description Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.
doi_str_mv 10.1007/s10646-015-1420-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685797178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713749800</galeid><sourcerecordid>A713749800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-c441894b006a35373e55b007d36539efe830a2e83285d630c7b8f65cab621e23</originalsourceid><addsrcrecordid>eNqNkstu1TAQhi0EoofCA7ABS2zYpIzjOI6XVcVNqsSCsrYcZ5zjKrFP7aTA2-OjlKsQQpZ8mfn-0Yz8E_KUwRkDkK8yg7ZpK2CiYk0NFbtHdkxIXnFg8j7ZgWp5pWpVn5BHOV8DgJINPCQntWg5CIAd8WtGGh0dU_y87KkJA-1xb259TGaiGIZD9GHJdInU5Iy53PZI0Tm0JVqEB8yLt35AOvsvy5ow0_UQAzU3qykJGtNogs9zfkweODNlfHJ3npKrN6-vLt5Vlx_evr84v6ysUGqpbNOwTjU9QGu44JKjEOUhB94KrtBhx8HUZa87MZQprOw71wpr-rZmWPNT8nIre0jxZi3N6dlni9NkAsY1a9Z2QirJZPc_KDQCBDtWffEHeh3XFMochZKlPaWU_EmNZkLtg4tLMvZYVJ9LxmWjOoBCnf2FKmvA2dsY0PkS_03ANoFNMeeETh-Sn036qhnooxH0ZgRdjKCPRtCsaJ7dNbz2Mw4_FN9_vgD1BuSSCiOmXyb6R9Xnm8iZqM2YfNafPtYFAGBdw2TDvwFDl8RK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1670079997</pqid></control><display><type>article</type><title>use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hasenbein, Simone ; Lawler, Sharon P ; Geist, Juergen ; Connon, Richard E</creator><creatorcontrib>Hasenbein, Simone ; Lawler, Sharon P ; Geist, Juergen ; Connon, Richard E</creatorcontrib><description>Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.</description><identifier>ISSN: 0963-9292</identifier><identifier>EISSN: 1573-3017</identifier><identifier>DOI: 10.1007/s10646-015-1420-1</identifier><identifier>PMID: 25630500</identifier><identifier>CODEN: ECOTEL</identifier><language>eng</language><publisher>Boston: Springer-Verlag</publisher><subject>Analysis ; Animals ; aquatic communities ; Aquatic organisms ; Chironomidae - drug effects ; Chironomidae - growth &amp; development ; Chironomidae - physiology ; Chironomus ; Chironomus dilutus ; Chlorpyrifos ; Chlorpyrifos - toxicity ; Contaminants ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Environment ; Environmental Management ; Enzyme inhibitors ; Exposure ; Growth ; growth retardation ; Insecticides ; Insecticides - toxicity ; lambda-cyhalothrin ; Larva - drug effects ; Larva - growth &amp; development ; Larva - physiology ; lethal concentration 50 ; Longevity - drug effects ; Monitoring ; Nitriles - toxicity ; Organophosphates ; Permethrin ; Permethrin - toxicity ; pesticide mixtures ; Pesticides ; pyrethrins ; Pyrethrins - toxicity ; Pyrethroids ; Survival ; Synergism ; Toxic ; Toxicity ; Toxicology ; Water Pollutants, Chemical - toxicity</subject><ispartof>Ecotoxicology (London), 2015-05, Vol.24 (4), p.746-759</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-c441894b006a35373e55b007d36539efe830a2e83285d630c7b8f65cab621e23</citedby><cites>FETCH-LOGICAL-c599t-c441894b006a35373e55b007d36539efe830a2e83285d630c7b8f65cab621e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10646-015-1420-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10646-015-1420-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25630500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasenbein, Simone</creatorcontrib><creatorcontrib>Lawler, Sharon P</creatorcontrib><creatorcontrib>Geist, Juergen</creatorcontrib><creatorcontrib>Connon, Richard E</creatorcontrib><title>use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms</title><title>Ecotoxicology (London)</title><addtitle>Ecotoxicology</addtitle><addtitle>Ecotoxicology</addtitle><description>Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.</description><subject>Analysis</subject><subject>Animals</subject><subject>aquatic communities</subject><subject>Aquatic organisms</subject><subject>Chironomidae - drug effects</subject><subject>Chironomidae - growth &amp; development</subject><subject>Chironomidae - physiology</subject><subject>Chironomus</subject><subject>Chironomus dilutus</subject><subject>Chlorpyrifos</subject><subject>Chlorpyrifos - toxicity</subject><subject>Contaminants</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Enzyme inhibitors</subject><subject>Exposure</subject><subject>Growth</subject><subject>growth retardation</subject><subject>Insecticides</subject><subject>Insecticides - toxicity</subject><subject>lambda-cyhalothrin</subject><subject>Larva - drug effects</subject><subject>Larva - growth &amp; development</subject><subject>Larva - physiology</subject><subject>lethal concentration 50</subject><subject>Longevity - drug effects</subject><subject>Monitoring</subject><subject>Nitriles - toxicity</subject><subject>Organophosphates</subject><subject>Permethrin</subject><subject>Permethrin - toxicity</subject><subject>pesticide mixtures</subject><subject>Pesticides</subject><subject>pyrethrins</subject><subject>Pyrethrins - toxicity</subject><subject>Pyrethroids</subject><subject>Survival</subject><subject>Synergism</subject><subject>Toxic</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Water Pollutants, Chemical - toxicity</subject><issn>0963-9292</issn><issn>1573-3017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkstu1TAQhi0EoofCA7ABS2zYpIzjOI6XVcVNqsSCsrYcZ5zjKrFP7aTA2-OjlKsQQpZ8mfn-0Yz8E_KUwRkDkK8yg7ZpK2CiYk0NFbtHdkxIXnFg8j7ZgWp5pWpVn5BHOV8DgJINPCQntWg5CIAd8WtGGh0dU_y87KkJA-1xb259TGaiGIZD9GHJdInU5Iy53PZI0Tm0JVqEB8yLt35AOvsvy5ow0_UQAzU3qykJGtNogs9zfkweODNlfHJ3npKrN6-vLt5Vlx_evr84v6ysUGqpbNOwTjU9QGu44JKjEOUhB94KrtBhx8HUZa87MZQprOw71wpr-rZmWPNT8nIre0jxZi3N6dlni9NkAsY1a9Z2QirJZPc_KDQCBDtWffEHeh3XFMochZKlPaWU_EmNZkLtg4tLMvZYVJ9LxmWjOoBCnf2FKmvA2dsY0PkS_03ANoFNMeeETh-Sn036qhnooxH0ZgRdjKCPRtCsaJ7dNbz2Mw4_FN9_vgD1BuSSCiOmXyb6R9Xnm8iZqM2YfNafPtYFAGBdw2TDvwFDl8RK</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Hasenbein, Simone</creator><creator>Lawler, Sharon P</creator><creator>Geist, Juergen</creator><creator>Connon, Richard E</creator><general>Springer-Verlag</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150501</creationdate><title>use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms</title><author>Hasenbein, Simone ; Lawler, Sharon P ; Geist, Juergen ; Connon, Richard E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-c441894b006a35373e55b007d36539efe830a2e83285d630c7b8f65cab621e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>aquatic communities</topic><topic>Aquatic organisms</topic><topic>Chironomidae - drug effects</topic><topic>Chironomidae - growth &amp; development</topic><topic>Chironomidae - physiology</topic><topic>Chironomus</topic><topic>Chironomus dilutus</topic><topic>Chlorpyrifos</topic><topic>Chlorpyrifos - toxicity</topic><topic>Contaminants</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Enzyme inhibitors</topic><topic>Exposure</topic><topic>Growth</topic><topic>growth retardation</topic><topic>Insecticides</topic><topic>Insecticides - toxicity</topic><topic>lambda-cyhalothrin</topic><topic>Larva - drug effects</topic><topic>Larva - growth &amp; development</topic><topic>Larva - physiology</topic><topic>lethal concentration 50</topic><topic>Longevity - drug effects</topic><topic>Monitoring</topic><topic>Nitriles - toxicity</topic><topic>Organophosphates</topic><topic>Permethrin</topic><topic>Permethrin - toxicity</topic><topic>pesticide mixtures</topic><topic>Pesticides</topic><topic>pyrethrins</topic><topic>Pyrethrins - toxicity</topic><topic>Pyrethroids</topic><topic>Survival</topic><topic>Synergism</topic><topic>Toxic</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Water Pollutants, Chemical - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasenbein, Simone</creatorcontrib><creatorcontrib>Lawler, Sharon P</creatorcontrib><creatorcontrib>Geist, Juergen</creatorcontrib><creatorcontrib>Connon, Richard E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ecotoxicology (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasenbein, Simone</au><au>Lawler, Sharon P</au><au>Geist, Juergen</au><au>Connon, Richard E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms</atitle><jtitle>Ecotoxicology (London)</jtitle><stitle>Ecotoxicology</stitle><addtitle>Ecotoxicology</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>24</volume><issue>4</issue><spage>746</spage><epage>759</epage><pages>746-759</pages><issn>0963-9292</issn><eissn>1573-3017</eissn><coden>ECOTEL</coden><abstract>Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.</abstract><cop>Boston</cop><pub>Springer-Verlag</pub><pmid>25630500</pmid><doi>10.1007/s10646-015-1420-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-9292
ispartof Ecotoxicology (London), 2015-05, Vol.24 (4), p.746-759
issn 0963-9292
1573-3017
language eng
recordid cdi_proquest_miscellaneous_1685797178
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Analysis
Animals
aquatic communities
Aquatic organisms
Chironomidae - drug effects
Chironomidae - growth & development
Chironomidae - physiology
Chironomus
Chironomus dilutus
Chlorpyrifos
Chlorpyrifos - toxicity
Contaminants
Earth and Environmental Science
Ecology
Ecotoxicology
Environment
Environmental Management
Enzyme inhibitors
Exposure
Growth
growth retardation
Insecticides
Insecticides - toxicity
lambda-cyhalothrin
Larva - drug effects
Larva - growth & development
Larva - physiology
lethal concentration 50
Longevity - drug effects
Monitoring
Nitriles - toxicity
Organophosphates
Permethrin
Permethrin - toxicity
pesticide mixtures
Pesticides
pyrethrins
Pyrethrins - toxicity
Pyrethroids
Survival
Synergism
Toxic
Toxicity
Toxicology
Water Pollutants, Chemical - toxicity
title use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=use%20of%20growth%20and%20behavioral%20endpoints%20to%20assess%20the%20effects%20of%20pesticide%20mixtures%20upon%20aquatic%20organisms&rft.jtitle=Ecotoxicology%20(London)&rft.au=Hasenbein,%20Simone&rft.date=2015-05-01&rft.volume=24&rft.issue=4&rft.spage=746&rft.epage=759&rft.pages=746-759&rft.issn=0963-9292&rft.eissn=1573-3017&rft.coden=ECOTEL&rft_id=info:doi/10.1007/s10646-015-1420-1&rft_dat=%3Cgale_proqu%3EA713749800%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1670079997&rft_id=info:pmid/25630500&rft_galeid=A713749800&rfr_iscdi=true