use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms
Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology (London) 2015-05, Vol.24 (4), p.746-759 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 759 |
---|---|
container_issue | 4 |
container_start_page | 746 |
container_title | Ecotoxicology (London) |
container_volume | 24 |
creator | Hasenbein, Simone Lawler, Sharon P Geist, Juergen Connon, Richard E |
description | Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments. |
doi_str_mv | 10.1007/s10646-015-1420-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685797178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713749800</galeid><sourcerecordid>A713749800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-c441894b006a35373e55b007d36539efe830a2e83285d630c7b8f65cab621e23</originalsourceid><addsrcrecordid>eNqNkstu1TAQhi0EoofCA7ABS2zYpIzjOI6XVcVNqsSCsrYcZ5zjKrFP7aTA2-OjlKsQQpZ8mfn-0Yz8E_KUwRkDkK8yg7ZpK2CiYk0NFbtHdkxIXnFg8j7ZgWp5pWpVn5BHOV8DgJINPCQntWg5CIAd8WtGGh0dU_y87KkJA-1xb259TGaiGIZD9GHJdInU5Iy53PZI0Tm0JVqEB8yLt35AOvsvy5ow0_UQAzU3qykJGtNogs9zfkweODNlfHJ3npKrN6-vLt5Vlx_evr84v6ysUGqpbNOwTjU9QGu44JKjEOUhB94KrtBhx8HUZa87MZQprOw71wpr-rZmWPNT8nIre0jxZi3N6dlni9NkAsY1a9Z2QirJZPc_KDQCBDtWffEHeh3XFMochZKlPaWU_EmNZkLtg4tLMvZYVJ9LxmWjOoBCnf2FKmvA2dsY0PkS_03ANoFNMeeETh-Sn036qhnooxH0ZgRdjKCPRtCsaJ7dNbz2Mw4_FN9_vgD1BuSSCiOmXyb6R9Xnm8iZqM2YfNafPtYFAGBdw2TDvwFDl8RK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1670079997</pqid></control><display><type>article</type><title>use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hasenbein, Simone ; Lawler, Sharon P ; Geist, Juergen ; Connon, Richard E</creator><creatorcontrib>Hasenbein, Simone ; Lawler, Sharon P ; Geist, Juergen ; Connon, Richard E</creatorcontrib><description>Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.</description><identifier>ISSN: 0963-9292</identifier><identifier>EISSN: 1573-3017</identifier><identifier>DOI: 10.1007/s10646-015-1420-1</identifier><identifier>PMID: 25630500</identifier><identifier>CODEN: ECOTEL</identifier><language>eng</language><publisher>Boston: Springer-Verlag</publisher><subject>Analysis ; Animals ; aquatic communities ; Aquatic organisms ; Chironomidae - drug effects ; Chironomidae - growth & development ; Chironomidae - physiology ; Chironomus ; Chironomus dilutus ; Chlorpyrifos ; Chlorpyrifos - toxicity ; Contaminants ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Environment ; Environmental Management ; Enzyme inhibitors ; Exposure ; Growth ; growth retardation ; Insecticides ; Insecticides - toxicity ; lambda-cyhalothrin ; Larva - drug effects ; Larva - growth & development ; Larva - physiology ; lethal concentration 50 ; Longevity - drug effects ; Monitoring ; Nitriles - toxicity ; Organophosphates ; Permethrin ; Permethrin - toxicity ; pesticide mixtures ; Pesticides ; pyrethrins ; Pyrethrins - toxicity ; Pyrethroids ; Survival ; Synergism ; Toxic ; Toxicity ; Toxicology ; Water Pollutants, Chemical - toxicity</subject><ispartof>Ecotoxicology (London), 2015-05, Vol.24 (4), p.746-759</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-c441894b006a35373e55b007d36539efe830a2e83285d630c7b8f65cab621e23</citedby><cites>FETCH-LOGICAL-c599t-c441894b006a35373e55b007d36539efe830a2e83285d630c7b8f65cab621e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10646-015-1420-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10646-015-1420-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25630500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasenbein, Simone</creatorcontrib><creatorcontrib>Lawler, Sharon P</creatorcontrib><creatorcontrib>Geist, Juergen</creatorcontrib><creatorcontrib>Connon, Richard E</creatorcontrib><title>use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms</title><title>Ecotoxicology (London)</title><addtitle>Ecotoxicology</addtitle><addtitle>Ecotoxicology</addtitle><description>Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.</description><subject>Analysis</subject><subject>Animals</subject><subject>aquatic communities</subject><subject>Aquatic organisms</subject><subject>Chironomidae - drug effects</subject><subject>Chironomidae - growth & development</subject><subject>Chironomidae - physiology</subject><subject>Chironomus</subject><subject>Chironomus dilutus</subject><subject>Chlorpyrifos</subject><subject>Chlorpyrifos - toxicity</subject><subject>Contaminants</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Enzyme inhibitors</subject><subject>Exposure</subject><subject>Growth</subject><subject>growth retardation</subject><subject>Insecticides</subject><subject>Insecticides - toxicity</subject><subject>lambda-cyhalothrin</subject><subject>Larva - drug effects</subject><subject>Larva - growth & development</subject><subject>Larva - physiology</subject><subject>lethal concentration 50</subject><subject>Longevity - drug effects</subject><subject>Monitoring</subject><subject>Nitriles - toxicity</subject><subject>Organophosphates</subject><subject>Permethrin</subject><subject>Permethrin - toxicity</subject><subject>pesticide mixtures</subject><subject>Pesticides</subject><subject>pyrethrins</subject><subject>Pyrethrins - toxicity</subject><subject>Pyrethroids</subject><subject>Survival</subject><subject>Synergism</subject><subject>Toxic</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Water Pollutants, Chemical - toxicity</subject><issn>0963-9292</issn><issn>1573-3017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkstu1TAQhi0EoofCA7ABS2zYpIzjOI6XVcVNqsSCsrYcZ5zjKrFP7aTA2-OjlKsQQpZ8mfn-0Yz8E_KUwRkDkK8yg7ZpK2CiYk0NFbtHdkxIXnFg8j7ZgWp5pWpVn5BHOV8DgJINPCQntWg5CIAd8WtGGh0dU_y87KkJA-1xb259TGaiGIZD9GHJdInU5Iy53PZI0Tm0JVqEB8yLt35AOvsvy5ow0_UQAzU3qykJGtNogs9zfkweODNlfHJ3npKrN6-vLt5Vlx_evr84v6ysUGqpbNOwTjU9QGu44JKjEOUhB94KrtBhx8HUZa87MZQprOw71wpr-rZmWPNT8nIre0jxZi3N6dlni9NkAsY1a9Z2QirJZPc_KDQCBDtWffEHeh3XFMochZKlPaWU_EmNZkLtg4tLMvZYVJ9LxmWjOoBCnf2FKmvA2dsY0PkS_03ANoFNMeeETh-Sn036qhnooxH0ZgRdjKCPRtCsaJ7dNbz2Mw4_FN9_vgD1BuSSCiOmXyb6R9Xnm8iZqM2YfNafPtYFAGBdw2TDvwFDl8RK</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Hasenbein, Simone</creator><creator>Lawler, Sharon P</creator><creator>Geist, Juergen</creator><creator>Connon, Richard E</creator><general>Springer-Verlag</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150501</creationdate><title>use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms</title><author>Hasenbein, Simone ; Lawler, Sharon P ; Geist, Juergen ; Connon, Richard E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-c441894b006a35373e55b007d36539efe830a2e83285d630c7b8f65cab621e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>aquatic communities</topic><topic>Aquatic organisms</topic><topic>Chironomidae - drug effects</topic><topic>Chironomidae - growth & development</topic><topic>Chironomidae - physiology</topic><topic>Chironomus</topic><topic>Chironomus dilutus</topic><topic>Chlorpyrifos</topic><topic>Chlorpyrifos - toxicity</topic><topic>Contaminants</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Enzyme inhibitors</topic><topic>Exposure</topic><topic>Growth</topic><topic>growth retardation</topic><topic>Insecticides</topic><topic>Insecticides - toxicity</topic><topic>lambda-cyhalothrin</topic><topic>Larva - drug effects</topic><topic>Larva - growth & development</topic><topic>Larva - physiology</topic><topic>lethal concentration 50</topic><topic>Longevity - drug effects</topic><topic>Monitoring</topic><topic>Nitriles - toxicity</topic><topic>Organophosphates</topic><topic>Permethrin</topic><topic>Permethrin - toxicity</topic><topic>pesticide mixtures</topic><topic>Pesticides</topic><topic>pyrethrins</topic><topic>Pyrethrins - toxicity</topic><topic>Pyrethroids</topic><topic>Survival</topic><topic>Synergism</topic><topic>Toxic</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Water Pollutants, Chemical - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasenbein, Simone</creatorcontrib><creatorcontrib>Lawler, Sharon P</creatorcontrib><creatorcontrib>Geist, Juergen</creatorcontrib><creatorcontrib>Connon, Richard E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ecotoxicology (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasenbein, Simone</au><au>Lawler, Sharon P</au><au>Geist, Juergen</au><au>Connon, Richard E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms</atitle><jtitle>Ecotoxicology (London)</jtitle><stitle>Ecotoxicology</stitle><addtitle>Ecotoxicology</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>24</volume><issue>4</issue><spage>746</spage><epage>759</epage><pages>746-759</pages><issn>0963-9292</issn><eissn>1573-3017</eissn><coden>ECOTEL</coden><abstract>Aquatic communities are often subject to complex contaminant mixtures, usually at sublethal concentrations, that can cause long-term detrimental effects. Chemicals within mixtures can effectively interact, resulting in synergism, antagonism or additivity. We investigated the tertiary mixture effects of two pyrethroids, lambda-cyhalothrin and permethrin, and the organophosphate chlorpyrifos, evaluating sublethal endpoints; immobility and growth, on Chironomus dilutus in 10-day exposures. We utilized a toxic units (TU) approach, based on median lethal concentrations (LC50) for each compound. The concepts of independent action and concentration addition were used to compare predicted mixture toxicity to observed mixture toxicity. Increased immobility resulted from mixture concentrations ≥1 TU (7.45 ng/L lambda-cyhalothrin × 24.90 ng/L permethrin × 129.70 ng/L chlorpyrifos), and single pesticides concentrations ≥0.25 TU (5.50 ng/L lambda-cyhalothrin, 24.23 ng/L permethrin, 90.92 ng/L chlorpyrifos, respectively). Growth was inhibited by pesticide mixtures ≥0.125 TU (1.04 ng/L lambda-cyhalothrin × 3.15 ng/L permethrin × 15.47 ng/L chlorpyrifos), and singly by lambda-cyhalothrin ≥0.25 TU (5.50 ng/L), and permethrin ≥0.167 TU (18.21 ng/L). The no observed effect concentrations (NOEC) for immobility and growth, for both mixture and single-pyrethroid exposure, were up to 8.0 and 12.0 times respectively lower than the corresponding NOEC for survival. The median effective concentrations (EC50) for growth (mixture and single-pyrethroid exposure) were up to 7.0 times lower than the respective LC50. This study reinforces that the integration of sublethal endpoints in monitoring efforts is powerful in discerning toxic effects that would otherwise be missed by solely utilizing traditional toxicity assessments.</abstract><cop>Boston</cop><pub>Springer-Verlag</pub><pmid>25630500</pmid><doi>10.1007/s10646-015-1420-1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-9292 |
ispartof | Ecotoxicology (London), 2015-05, Vol.24 (4), p.746-759 |
issn | 0963-9292 1573-3017 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685797178 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Analysis Animals aquatic communities Aquatic organisms Chironomidae - drug effects Chironomidae - growth & development Chironomidae - physiology Chironomus Chironomus dilutus Chlorpyrifos Chlorpyrifos - toxicity Contaminants Earth and Environmental Science Ecology Ecotoxicology Environment Environmental Management Enzyme inhibitors Exposure Growth growth retardation Insecticides Insecticides - toxicity lambda-cyhalothrin Larva - drug effects Larva - growth & development Larva - physiology lethal concentration 50 Longevity - drug effects Monitoring Nitriles - toxicity Organophosphates Permethrin Permethrin - toxicity pesticide mixtures Pesticides pyrethrins Pyrethrins - toxicity Pyrethroids Survival Synergism Toxic Toxicity Toxicology Water Pollutants, Chemical - toxicity |
title | use of growth and behavioral endpoints to assess the effects of pesticide mixtures upon aquatic organisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=use%20of%20growth%20and%20behavioral%20endpoints%20to%20assess%20the%20effects%20of%20pesticide%20mixtures%20upon%20aquatic%20organisms&rft.jtitle=Ecotoxicology%20(London)&rft.au=Hasenbein,%20Simone&rft.date=2015-05-01&rft.volume=24&rft.issue=4&rft.spage=746&rft.epage=759&rft.pages=746-759&rft.issn=0963-9292&rft.eissn=1573-3017&rft.coden=ECOTEL&rft_id=info:doi/10.1007/s10646-015-1420-1&rft_dat=%3Cgale_proqu%3EA713749800%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1670079997&rft_id=info:pmid/25630500&rft_galeid=A713749800&rfr_iscdi=true |