Nanoindentation responses of Si–Ge multilayers

In this study, we employed the nanoindentation technique to evaluate the pop-in events of Si–Ge multilayers under extra-low forces. X-ray diffraction revealed a shift of the peaks of the Ge atoms from 68.70 to 68.50°, due to gradual mixing of previously isolated Si and Ge atoms into an SiGe compound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of materials research 2014-02, Vol.105 (2), p.139-144
1. Verfasser: Lian, Derming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 2
container_start_page 139
container_title International journal of materials research
container_volume 105
creator Lian, Derming
description In this study, we employed the nanoindentation technique to evaluate the pop-in events of Si–Ge multilayers under extra-low forces. X-ray diffraction revealed a shift of the peaks of the Ge atoms from 68.70 to 68.50°, due to gradual mixing of previously isolated Si and Ge atoms into an SiGe compound, upon increasing the annealing temperature. Atomic force microscopy images of the vicinity near the triangular indentation mark revealed that the primarily plastic deformation, the pop-in event observed in the load–displacement curve, was based on slightly active dislocation nucleation and propagation during treatment with the artificial indenter. The samples annealed at , 400, 500, and 600°C exhibited hardnesses ( ) of 18.6 ± 1.2, 17.9 ± 1.1, 18.9 ± 1.2, and 15.0 ± 0.8 GPa, respectively, and elastic moduli ( ) of 220.0 ± 5.2, 224.9 ± 5.4, 220.7 ± 4.5, and 186.7 ± 3.8 GPa, respectively. These values reveal that elastic/plastic contact translation of the Si–Ge multilayer occurred to various extents depending upon the annealing conditions; in addition, the values of for the samples annealed at , 400, 500, and 600°C were 0.449, 0.416, 0.412, and 0.470, respectively. In a crystal structure, release of the indentation load reflects the directly compressed volume; the total penetration depth into the film was approximately 30 nm with a peak load of 500 μN. Accordingly, the annealed samples can exhibit pop-in after indentation earlier than samples treated merely at
doi_str_mv 10.3139/146.111001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685796476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685796476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-8fb82ad58464a35eb31badcfcb94c5de05fdb4937de9d958b5a0f2ba9d1160d63</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoWKsbn2A2gghTc3KbZClFqyC6UNchk4tMmU5qMoN05zv4hj6JU1pcuTqHw_f_cD6EzgHPKFB1DUzMAABjOEATAoqXknNxiCYgBSk5keQYneS8xJiDqMgE4SfTxaZzvutN38SuSD6vY5d9LmIoXpqfr--FL1ZD2zet2fiUT9FRMG32Z_s5RW93t6_z-_LxefEwv3ksLWWsL2WoJTGOSyaYodzXFGrjbLC1YpY7j3lwNVO0cl45xWXNDQ6kNsoBCOwEnaLLXe86xY_B516vmmx925rOxyFrEJJXSrBqi17tUJtizskHvU7NyqSNBqy3WvSoRe-0jPDFvtdka9qQTGeb_JcYDUmoJB45teM-Tdv75Px7GjbjopdxSN34-T_lgDkZL_QXkKt0Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685796476</pqid></control><display><type>article</type><title>Nanoindentation responses of Si–Ge multilayers</title><source>De Gruyter journals</source><creator>Lian, Derming</creator><creatorcontrib>Lian, Derming</creatorcontrib><description>In this study, we employed the nanoindentation technique to evaluate the pop-in events of Si–Ge multilayers under extra-low forces. X-ray diffraction revealed a shift of the peaks of the Ge atoms from 68.70 to 68.50°, due to gradual mixing of previously isolated Si and Ge atoms into an SiGe compound, upon increasing the annealing temperature. Atomic force microscopy images of the vicinity near the triangular indentation mark revealed that the primarily plastic deformation, the pop-in event observed in the load–displacement curve, was based on slightly active dislocation nucleation and propagation during treatment with the artificial indenter. The samples annealed at , 400, 500, and 600°C exhibited hardnesses ( ) of 18.6 ± 1.2, 17.9 ± 1.1, 18.9 ± 1.2, and 15.0 ± 0.8 GPa, respectively, and elastic moduli ( ) of 220.0 ± 5.2, 224.9 ± 5.4, 220.7 ± 4.5, and 186.7 ± 3.8 GPa, respectively. These values reveal that elastic/plastic contact translation of the Si–Ge multilayer occurred to various extents depending upon the annealing conditions; in addition, the values of for the samples annealed at , 400, 500, and 600°C were 0.449, 0.416, 0.412, and 0.470, respectively. In a crystal structure, release of the indentation load reflects the directly compressed volume; the total penetration depth into the film was approximately 30 nm with a peak load of 500 μN. Accordingly, the annealed samples can exhibit pop-in after indentation earlier than samples treated merely at</description><identifier>ISSN: 1862-5282</identifier><identifier>EISSN: 2195-8556</identifier><identifier>DOI: 10.3139/146.111001</identifier><language>eng</language><publisher>Munich: De Gruyter</publisher><subject>Annealing ; Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Crystal structure ; Dislocations ; Exact sciences and technology ; Germanium ; Indentation ; Materials science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Multilayers ; Nanoindentation ; Nucleation ; Physics ; Plastic deformation ; Silicon germanides ; Thin films ; Vapor deposition</subject><ispartof>International journal of materials research, 2014-02, Vol.105 (2), p.139-144</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-8fb82ad58464a35eb31badcfcb94c5de05fdb4937de9d958b5a0f2ba9d1160d63</citedby><cites>FETCH-LOGICAL-c344t-8fb82ad58464a35eb31badcfcb94c5de05fdb4937de9d958b5a0f2ba9d1160d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.3139/146.111001/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.3139/146.111001/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66626,68410</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28281780$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lian, Derming</creatorcontrib><title>Nanoindentation responses of Si–Ge multilayers</title><title>International journal of materials research</title><description>In this study, we employed the nanoindentation technique to evaluate the pop-in events of Si–Ge multilayers under extra-low forces. X-ray diffraction revealed a shift of the peaks of the Ge atoms from 68.70 to 68.50°, due to gradual mixing of previously isolated Si and Ge atoms into an SiGe compound, upon increasing the annealing temperature. Atomic force microscopy images of the vicinity near the triangular indentation mark revealed that the primarily plastic deformation, the pop-in event observed in the load–displacement curve, was based on slightly active dislocation nucleation and propagation during treatment with the artificial indenter. The samples annealed at , 400, 500, and 600°C exhibited hardnesses ( ) of 18.6 ± 1.2, 17.9 ± 1.1, 18.9 ± 1.2, and 15.0 ± 0.8 GPa, respectively, and elastic moduli ( ) of 220.0 ± 5.2, 224.9 ± 5.4, 220.7 ± 4.5, and 186.7 ± 3.8 GPa, respectively. These values reveal that elastic/plastic contact translation of the Si–Ge multilayer occurred to various extents depending upon the annealing conditions; in addition, the values of for the samples annealed at , 400, 500, and 600°C were 0.449, 0.416, 0.412, and 0.470, respectively. In a crystal structure, release of the indentation load reflects the directly compressed volume; the total penetration depth into the film was approximately 30 nm with a peak load of 500 μN. Accordingly, the annealed samples can exhibit pop-in after indentation earlier than samples treated merely at</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal structure</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Germanium</subject><subject>Indentation</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Multilayers</subject><subject>Nanoindentation</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Plastic deformation</subject><subject>Silicon germanides</subject><subject>Thin films</subject><subject>Vapor deposition</subject><issn>1862-5282</issn><issn>2195-8556</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEUhoMoWKsbn2A2gghTc3KbZClFqyC6UNchk4tMmU5qMoN05zv4hj6JU1pcuTqHw_f_cD6EzgHPKFB1DUzMAABjOEATAoqXknNxiCYgBSk5keQYneS8xJiDqMgE4SfTxaZzvutN38SuSD6vY5d9LmIoXpqfr--FL1ZD2zet2fiUT9FRMG32Z_s5RW93t6_z-_LxefEwv3ksLWWsL2WoJTGOSyaYodzXFGrjbLC1YpY7j3lwNVO0cl45xWXNDQ6kNsoBCOwEnaLLXe86xY_B516vmmx925rOxyFrEJJXSrBqi17tUJtizskHvU7NyqSNBqy3WvSoRe-0jPDFvtdka9qQTGeb_JcYDUmoJB45teM-Tdv75Px7GjbjopdxSN34-T_lgDkZL_QXkKt0Zg</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Lian, Derming</creator><general>De Gruyter</general><general>Hanser</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140201</creationdate><title>Nanoindentation responses of Si–Ge multilayers</title><author>Lian, Derming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-8fb82ad58464a35eb31badcfcb94c5de05fdb4937de9d958b5a0f2ba9d1160d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal structure</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Germanium</topic><topic>Indentation</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Multilayers</topic><topic>Nanoindentation</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Plastic deformation</topic><topic>Silicon germanides</topic><topic>Thin films</topic><topic>Vapor deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Derming</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lian, Derming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoindentation responses of Si–Ge multilayers</atitle><jtitle>International journal of materials research</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>105</volume><issue>2</issue><spage>139</spage><epage>144</epage><pages>139-144</pages><issn>1862-5282</issn><eissn>2195-8556</eissn><abstract>In this study, we employed the nanoindentation technique to evaluate the pop-in events of Si–Ge multilayers under extra-low forces. X-ray diffraction revealed a shift of the peaks of the Ge atoms from 68.70 to 68.50°, due to gradual mixing of previously isolated Si and Ge atoms into an SiGe compound, upon increasing the annealing temperature. Atomic force microscopy images of the vicinity near the triangular indentation mark revealed that the primarily plastic deformation, the pop-in event observed in the load–displacement curve, was based on slightly active dislocation nucleation and propagation during treatment with the artificial indenter. The samples annealed at , 400, 500, and 600°C exhibited hardnesses ( ) of 18.6 ± 1.2, 17.9 ± 1.1, 18.9 ± 1.2, and 15.0 ± 0.8 GPa, respectively, and elastic moduli ( ) of 220.0 ± 5.2, 224.9 ± 5.4, 220.7 ± 4.5, and 186.7 ± 3.8 GPa, respectively. These values reveal that elastic/plastic contact translation of the Si–Ge multilayer occurred to various extents depending upon the annealing conditions; in addition, the values of for the samples annealed at , 400, 500, and 600°C were 0.449, 0.416, 0.412, and 0.470, respectively. In a crystal structure, release of the indentation load reflects the directly compressed volume; the total penetration depth into the film was approximately 30 nm with a peak load of 500 μN. Accordingly, the annealed samples can exhibit pop-in after indentation earlier than samples treated merely at</abstract><cop>Munich</cop><pub>De Gruyter</pub><doi>10.3139/146.111001</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-5282
ispartof International journal of materials research, 2014-02, Vol.105 (2), p.139-144
issn 1862-5282
2195-8556
language eng
recordid cdi_proquest_miscellaneous_1685796476
source De Gruyter journals
subjects Annealing
Applied sciences
Cross-disciplinary physics: materials science
rheology
Crystal structure
Dislocations
Exact sciences and technology
Germanium
Indentation
Materials science
Metals. Metallurgy
Methods of deposition of films and coatings
film growth and epitaxy
Multilayers
Nanoindentation
Nucleation
Physics
Plastic deformation
Silicon germanides
Thin films
Vapor deposition
title Nanoindentation responses of Si–Ge multilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoindentation%20responses%20of%20Si%E2%80%93Ge%20multilayers&rft.jtitle=International%20journal%20of%20materials%20research&rft.au=Lian,%20Derming&rft.date=2014-02-01&rft.volume=105&rft.issue=2&rft.spage=139&rft.epage=144&rft.pages=139-144&rft.issn=1862-5282&rft.eissn=2195-8556&rft_id=info:doi/10.3139/146.111001&rft_dat=%3Cproquest_cross%3E1685796476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685796476&rft_id=info:pmid/&rfr_iscdi=true