Effective boundary condition for a quasi-Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition

We consider the quasi‐Newtonian flow in a domain with a periodic rough bottom Γϵ of period of order the small parameter ϵ and amplitude δϵ, such that δϵ 2. In the case δϵ>> ϵ2p‐1/p the effective boundary condition in the limit ϵ = 0 is the no‐slip condition, while if δϵ

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2015-05, Vol.95 (5), p.527-548
1. Verfasser: Suárez-Grau, F.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 5
container_start_page 527
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 95
creator Suárez-Grau, F.J.
description We consider the quasi‐Newtonian flow in a domain with a periodic rough bottom Γϵ of period of order the small parameter ϵ and amplitude δϵ, such that δϵ 2. In the case δϵ>> ϵ2p‐1/p the effective boundary condition in the limit ϵ = 0 is the no‐slip condition, while if δϵ
doi_str_mv 10.1002/zamm.201300160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685792580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685792580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-7093f0e5209522b33d0deb259fa3c30ae9d9ca7630d431aa3bc0a54e92893c603</originalsourceid><addsrcrecordid>eNqFkU1vEzEURS1EJULLlrUlNmwmPNvz5WVVlQJqwyYoiI314rFTl5lxa3tSwoLfjqOgFnXTlWXrnOd3dQl5y2DOAPiH3zgMcw5MALAaXpAZqzgrynx7SWYAZVlwXjevyOsYbyC_SiZm5M-5tUYntzV07aexw7Cj2o-dS86P1PpAkd5NGF2xMPfJjw5HunVR-ylS20-uo5gyEnu3uU79jgY_ba4fR8WEIblxQ23wQ-YWuHUmPP5wQo4s9tG8-Xcek28fz5dnn4rLrxefz04vCy3aFooGpLBgKg6y4nwtRAedWfNKWhRaABrZSY1NLaArBUMUaw1YlUbyVgpdgzgm7w9zb4O_m0xMasghTN_jaHIUxeq2aiSv2j367gl646cw5u32FGdNKZs2U_MDpYOPMRirboMbcmTFQO3rUPs61EMdWZAH4d71ZvcMrX6cXl397xYH18Vkfj24GH6quhFNpVaLC_V9tVzWK_5FLcVfADSfeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682174978</pqid></control><display><type>article</type><title>Effective boundary condition for a quasi-Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Suárez-Grau, F.J.</creator><creatorcontrib>Suárez-Grau, F.J.</creatorcontrib><description>We consider the quasi‐Newtonian flow in a domain with a periodic rough bottom Γϵ of period of order the small parameter ϵ and amplitude δϵ, such that δϵ &lt;&lt; ϵ. The flow is described by the 3D incompressible non‐Newtonian Navier‐Stokes system where the viscosity is given by the non linear power law which is widely used for dilatant fluids (shear thickening). Assuming that the fluid satisfies the Navier slip condition on Γϵ and letting ϵ → 0, we obtain three different macroscopic models depending on the magnitude of δϵ with respect to ϵ2p‐1/p, with p &gt; 2. In the case δϵ&gt;&gt; ϵ2p‐1/p the effective boundary condition in the limit ϵ = 0 is the no‐slip condition, while if δϵ&lt;&lt; ϵ2p‐1/p there is no roughness‐induced effect. In the critical case when δϵ ∼ ϵ2p‐1/p we provide a more accurate effective boundary condition of Navier type. Finally, we also obtain corrector result for the pressure and velocity in every cases. The author considers the quasi‐Newtonian flow in a domain with a periodic rough bottom Γε of period of order the small parameter ε and amplitude δε, such that . The flow is described by the 3D incompressible non‐Newtonian Navier‐Stokes system where the viscosity is given by the non linear power law which is widely used for dilatant fluids (shear thickening)….</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201300160</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Finite element analysis ; Fluid flow ; Fluids ; Incompressible flow ; Mathematical models ; Navier boundary condition ; Navier-Stokes equations ; Quasi-Newtonian fluid ; rough boundary ; Three dimensional</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2015-05, Vol.95 (5), p.527-548</ispartof><rights>2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-7093f0e5209522b33d0deb259fa3c30ae9d9ca7630d431aa3bc0a54e92893c603</citedby><cites>FETCH-LOGICAL-c3880-7093f0e5209522b33d0deb259fa3c30ae9d9ca7630d431aa3bc0a54e92893c603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201300160$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201300160$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Suárez-Grau, F.J.</creatorcontrib><title>Effective boundary condition for a quasi-Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. Angew. Math. Mech</addtitle><description>We consider the quasi‐Newtonian flow in a domain with a periodic rough bottom Γϵ of period of order the small parameter ϵ and amplitude δϵ, such that δϵ &lt;&lt; ϵ. The flow is described by the 3D incompressible non‐Newtonian Navier‐Stokes system where the viscosity is given by the non linear power law which is widely used for dilatant fluids (shear thickening). Assuming that the fluid satisfies the Navier slip condition on Γϵ and letting ϵ → 0, we obtain three different macroscopic models depending on the magnitude of δϵ with respect to ϵ2p‐1/p, with p &gt; 2. In the case δϵ&gt;&gt; ϵ2p‐1/p the effective boundary condition in the limit ϵ = 0 is the no‐slip condition, while if δϵ&lt;&lt; ϵ2p‐1/p there is no roughness‐induced effect. In the critical case when δϵ ∼ ϵ2p‐1/p we provide a more accurate effective boundary condition of Navier type. Finally, we also obtain corrector result for the pressure and velocity in every cases. The author considers the quasi‐Newtonian flow in a domain with a periodic rough bottom Γε of period of order the small parameter ε and amplitude δε, such that . The flow is described by the 3D incompressible non‐Newtonian Navier‐Stokes system where the viscosity is given by the non linear power law which is widely used for dilatant fluids (shear thickening)….</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Finite element analysis</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Incompressible flow</subject><subject>Mathematical models</subject><subject>Navier boundary condition</subject><subject>Navier-Stokes equations</subject><subject>Quasi-Newtonian fluid</subject><subject>rough boundary</subject><subject>Three dimensional</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEURS1EJULLlrUlNmwmPNvz5WVVlQJqwyYoiI314rFTl5lxa3tSwoLfjqOgFnXTlWXrnOd3dQl5y2DOAPiH3zgMcw5MALAaXpAZqzgrynx7SWYAZVlwXjevyOsYbyC_SiZm5M-5tUYntzV07aexw7Cj2o-dS86P1PpAkd5NGF2xMPfJjw5HunVR-ylS20-uo5gyEnu3uU79jgY_ba4fR8WEIblxQ23wQ-YWuHUmPP5wQo4s9tG8-Xcek28fz5dnn4rLrxefz04vCy3aFooGpLBgKg6y4nwtRAedWfNKWhRaABrZSY1NLaArBUMUaw1YlUbyVgpdgzgm7w9zb4O_m0xMasghTN_jaHIUxeq2aiSv2j367gl646cw5u32FGdNKZs2U_MDpYOPMRirboMbcmTFQO3rUPs61EMdWZAH4d71ZvcMrX6cXl397xYH18Vkfj24GH6quhFNpVaLC_V9tVzWK_5FLcVfADSfeQ</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Suárez-Grau, F.J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>Effective boundary condition for a quasi-Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition</title><author>Suárez-Grau, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-7093f0e5209522b33d0deb259fa3c30ae9d9ca7630d431aa3bc0a54e92893c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Finite element analysis</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Incompressible flow</topic><topic>Mathematical models</topic><topic>Navier boundary condition</topic><topic>Navier-Stokes equations</topic><topic>Quasi-Newtonian fluid</topic><topic>rough boundary</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suárez-Grau, F.J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suárez-Grau, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective boundary condition for a quasi-Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. Angew. Math. Mech</addtitle><date>2015-05</date><risdate>2015</risdate><volume>95</volume><issue>5</issue><spage>527</spage><epage>548</epage><pages>527-548</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>We consider the quasi‐Newtonian flow in a domain with a periodic rough bottom Γϵ of period of order the small parameter ϵ and amplitude δϵ, such that δϵ &lt;&lt; ϵ. The flow is described by the 3D incompressible non‐Newtonian Navier‐Stokes system where the viscosity is given by the non linear power law which is widely used for dilatant fluids (shear thickening). Assuming that the fluid satisfies the Navier slip condition on Γϵ and letting ϵ → 0, we obtain three different macroscopic models depending on the magnitude of δϵ with respect to ϵ2p‐1/p, with p &gt; 2. In the case δϵ&gt;&gt; ϵ2p‐1/p the effective boundary condition in the limit ϵ = 0 is the no‐slip condition, while if δϵ&lt;&lt; ϵ2p‐1/p there is no roughness‐induced effect. In the critical case when δϵ ∼ ϵ2p‐1/p we provide a more accurate effective boundary condition of Navier type. Finally, we also obtain corrector result for the pressure and velocity in every cases. The author considers the quasi‐Newtonian flow in a domain with a periodic rough bottom Γε of period of order the small parameter ε and amplitude δε, such that . The flow is described by the 3D incompressible non‐Newtonian Navier‐Stokes system where the viscosity is given by the non linear power law which is widely used for dilatant fluids (shear thickening)….</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/zamm.201300160</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2015-05, Vol.95 (5), p.527-548
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1685792580
source Wiley Online Library Journals Frontfile Complete
subjects Boundary conditions
Computational fluid dynamics
Finite element analysis
Fluid flow
Fluids
Incompressible flow
Mathematical models
Navier boundary condition
Navier-Stokes equations
Quasi-Newtonian fluid
rough boundary
Three dimensional
title Effective boundary condition for a quasi-Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20boundary%20condition%20for%20a%20quasi-Newtonian%20viscous%20fluid%20at%20a%20slightly%20rough%20boundary%20starting%20from%20a%20Navier%20condition&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Su%C3%A1rez-Grau,%20F.J.&rft.date=2015-05&rft.volume=95&rft.issue=5&rft.spage=527&rft.epage=548&rft.pages=527-548&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201300160&rft_dat=%3Cproquest_cross%3E1685792580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682174978&rft_id=info:pmid/&rfr_iscdi=true