Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions
Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing)...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2015-02, Vol.276, p.133-144 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | |
container_start_page | 133 |
container_title | Journal of power sources |
container_volume | 276 |
creator | Wendel, C.H. Kazempoor, P. Braun, R.J. |
description | Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.
[Display omitted]
•An electrical energy storage system using reversible solid oxide cells is modeled.•Thermal management with carbonaceous reactant species increases system efficiency.•System modeling reveals tradeoffs between roundtrip efficiency and energy density.•Roundtrip efficiency >70% is achieved by operating the stack at 20 bar and 680 °C. |
doi_str_mv | 10.1016/j.jpowsour.2014.10.205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685788259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314018242</els_id><sourcerecordid>1685788259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c65d3223818eaceb974250480d6d84571bed244a891cc258c76074fa8675b543</originalsourceid><addsrcrecordid>eNqNUctOAzEMjBBIlMcvoBy5bEl2k03KCYR4SQgO9B5lE7dKtU1KvC3070lVOMPJ1nhmZHsIueBszBlvrxbjxSp9Ylrncc24KGCp8oCMuFZNVSspD8mINUpXSsnmmJwgLhhjnCs2IsNr2kBPoQc35OBsaSPk-ZbikLKdA8UtDrCknUXwNEWaYQMZQ9eXUepDwb6CB-qg7_Gavu_ZHjDMI7WxjFeQ7RDinLoUfRhCinhGjma2Rzj_qadk-nA_vXuqXt4en-9uXyonuBwq10rf1HWjuQbroJsoUUsmNPOt10Iq3oGvhbB6wp2rpXaqZUrMrG6V7KRoTsnl3naV08cacDDLgLtFbYS0RsNbLZXWtZz8h8qEkBPVFGq7p7qcEDPMzCqHpc1bw5nZBWIW5jcQswtkh5dAivBmL4Ry8iZANugCRAc-5PJ941P4y-IbSd2ZkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680445973</pqid></control><display><type>article</type><title>Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wendel, C.H. ; Kazempoor, P. ; Braun, R.J.</creator><creatorcontrib>Wendel, C.H. ; Kazempoor, P. ; Braun, R.J.</creatorcontrib><description>Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.
[Display omitted]
•An electrical energy storage system using reversible solid oxide cells is modeled.•Thermal management with carbonaceous reactant species increases system efficiency.•System modeling reveals tradeoffs between roundtrip efficiency and energy density.•Roundtrip efficiency >70% is achieved by operating the stack at 20 bar and 680 °C.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.10.205</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Co-electrolysis ; Electrical energy storage ; Electrolysis ; Electrolytic cells ; Energy density ; Energy storage ; Fuels ; Methanation ; Oxides ; Regenerative ; Reversible solid oxide cell ; Solid oxide fuel cell ; Stacks ; System modeling</subject><ispartof>Journal of power sources, 2015-02, Vol.276, p.133-144</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c65d3223818eaceb974250480d6d84571bed244a891cc258c76074fa8675b543</citedby><cites>FETCH-LOGICAL-c415t-c65d3223818eaceb974250480d6d84571bed244a891cc258c76074fa8675b543</cites><orcidid>0000-0003-3521-1265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2014.10.205$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wendel, C.H.</creatorcontrib><creatorcontrib>Kazempoor, P.</creatorcontrib><creatorcontrib>Braun, R.J.</creatorcontrib><title>Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions</title><title>Journal of power sources</title><description>Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.
[Display omitted]
•An electrical energy storage system using reversible solid oxide cells is modeled.•Thermal management with carbonaceous reactant species increases system efficiency.•System modeling reveals tradeoffs between roundtrip efficiency and energy density.•Roundtrip efficiency >70% is achieved by operating the stack at 20 bar and 680 °C.</description><subject>Co-electrolysis</subject><subject>Electrical energy storage</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Energy density</subject><subject>Energy storage</subject><subject>Fuels</subject><subject>Methanation</subject><subject>Oxides</subject><subject>Regenerative</subject><subject>Reversible solid oxide cell</subject><subject>Solid oxide fuel cell</subject><subject>Stacks</subject><subject>System modeling</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUctOAzEMjBBIlMcvoBy5bEl2k03KCYR4SQgO9B5lE7dKtU1KvC3070lVOMPJ1nhmZHsIueBszBlvrxbjxSp9Ylrncc24KGCp8oCMuFZNVSspD8mINUpXSsnmmJwgLhhjnCs2IsNr2kBPoQc35OBsaSPk-ZbikLKdA8UtDrCknUXwNEWaYQMZQ9eXUepDwb6CB-qg7_Gavu_ZHjDMI7WxjFeQ7RDinLoUfRhCinhGjma2Rzj_qadk-nA_vXuqXt4en-9uXyonuBwq10rf1HWjuQbroJsoUUsmNPOt10Iq3oGvhbB6wp2rpXaqZUrMrG6V7KRoTsnl3naV08cacDDLgLtFbYS0RsNbLZXWtZz8h8qEkBPVFGq7p7qcEDPMzCqHpc1bw5nZBWIW5jcQswtkh5dAivBmL4Ry8iZANugCRAc-5PJ941P4y-IbSd2ZkQ</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Wendel, C.H.</creator><creator>Kazempoor, P.</creator><creator>Braun, R.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3521-1265</orcidid></search><sort><creationdate>20150215</creationdate><title>Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions</title><author>Wendel, C.H. ; Kazempoor, P. ; Braun, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c65d3223818eaceb974250480d6d84571bed244a891cc258c76074fa8675b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Co-electrolysis</topic><topic>Electrical energy storage</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Energy density</topic><topic>Energy storage</topic><topic>Fuels</topic><topic>Methanation</topic><topic>Oxides</topic><topic>Regenerative</topic><topic>Reversible solid oxide cell</topic><topic>Solid oxide fuel cell</topic><topic>Stacks</topic><topic>System modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wendel, C.H.</creatorcontrib><creatorcontrib>Kazempoor, P.</creatorcontrib><creatorcontrib>Braun, R.J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wendel, C.H.</au><au>Kazempoor, P.</au><au>Braun, R.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions</atitle><jtitle>Journal of power sources</jtitle><date>2015-02-15</date><risdate>2015</risdate><volume>276</volume><spage>133</spage><epage>144</epage><pages>133-144</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.
[Display omitted]
•An electrical energy storage system using reversible solid oxide cells is modeled.•Thermal management with carbonaceous reactant species increases system efficiency.•System modeling reveals tradeoffs between roundtrip efficiency and energy density.•Roundtrip efficiency >70% is achieved by operating the stack at 20 bar and 680 °C.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.10.205</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3521-1265</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2015-02, Vol.276, p.133-144 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685788259 |
source | Access via ScienceDirect (Elsevier) |
subjects | Co-electrolysis Electrical energy storage Electrolysis Electrolytic cells Energy density Energy storage Fuels Methanation Oxides Regenerative Reversible solid oxide cell Solid oxide fuel cell Stacks System modeling |
title | Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20electrical%20energy%20storage%20system%20based%20on%20reversible%20solid%20oxide%20cells:%20System%20design%20and%20operating%20conditions&rft.jtitle=Journal%20of%20power%20sources&rft.au=Wendel,%20C.H.&rft.date=2015-02-15&rft.volume=276&rft.spage=133&rft.epage=144&rft.pages=133-144&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2014.10.205&rft_dat=%3Cproquest_cross%3E1685788259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680445973&rft_id=info:pmid/&rft_els_id=S0378775314018242&rfr_iscdi=true |