Determining the modal mineralogy of Martian soils
A method for identifying the major and minor minerals and quantifying their proportions (by weight) in soils at the Mars Exploration Rovers landing sites is presented. The procedure utilizes modeled Mössbauer data for iron‐bearing minerals, chemical calculations of Alpha Particle X‐ray Spectrometer...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Planets 2010-07, Vol.115 (E7), p.1C-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | E7 |
container_start_page | 1C |
container_title | Journal of Geophysical Research: Planets |
container_volume | 115 |
creator | McSween Jr, Harry Y. McGlynn, Ian O. Rogers, A. Deane |
description | A method for identifying the major and minor minerals and quantifying their proportions (by weight) in soils at the Mars Exploration Rovers landing sites is presented. The procedure utilizes modeled Mössbauer data for iron‐bearing minerals, chemical calculations of Alpha Particle X‐ray Spectrometer data for iron‐absent minerals, and modeling of MiniTES thermal infrared spectra for silica and clays. Two models are formulated, using different assumptions about the mineralogy of sulfur and chlorine: sulfate + chloride, or incorporated in or adsorbed onto schwertmannite + akaganeite. The actual soil mineralogy may be bracketed by these results. Using either model, average dark soils on the Gusev crater plains and on Meridiani Planum are shown to be composed of a mixture of igneous (olivine, pyroxene, plagioclase, Fe‐Ti‐Cr spinels, phosphate) and alteration (amorphous silica, hematite, nanophase oxides, clays, plus sulfate + chloride or oxysulfate + oxychloride) minerals. This assemblage suggests that soil alteration did not occur in situ and that the igneous and alteration components were likely derived from different sources. The (model dependent) mixing ratio of igneous and alteration components is identical at the two sites on opposite sides of the planet, implying that Martian soils may provide a representative mineralogical sampling of the exposed crust. |
doi_str_mv | 10.1029/2010JE003582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685781631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685781631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4990-45e00f3efddc5d6b22122d83a007311e4446243990392af2225e5c84da3e19df3</originalsourceid><addsrcrecordid>eNqN0FFLwzAQAOAgCo65N39AwRcfrF4uSdM-6pzVMRXc1McQ23R2du1MOnT_3khFxAfxXg6O7-64I2SfwjEFTE4QKIxHAEzEuEV6SEUUIgJukx5QHoeAKHfJwLkF-OAi4kB7hJ6b1thlWZf1PGifTbBscl0FvmCsrpr5JmiK4FrbttR14Jqycntkp9CVM4Ov3Cf3F6PZ8DKc3KZXw9NJqHmSQMiFASiYKfI8E3n0hEgR85hpAMkoNZzzCDnzlCWoC0QURmQxzzUzNMkL1ieH3dyVbV7XxrVqWbrMVJWuTbN2ikaxkDGNGP0PBb8NJPf04BddNGtb-0O8kpzLmEexV0edymzjnDWFWtlyqe1GUVCf31Y_v-05dvytrMzmT6vG6d0Ipb-6T8KuqXStef9u0vZFRZJJoR5vUjVNH86ns8mZ4uwDGlWLcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674478468</pqid></control><display><type>article</type><title>Determining the modal mineralogy of Martian soils</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>McSween Jr, Harry Y. ; McGlynn, Ian O. ; Rogers, A. Deane</creator><creatorcontrib>McSween Jr, Harry Y. ; McGlynn, Ian O. ; Rogers, A. Deane</creatorcontrib><description>A method for identifying the major and minor minerals and quantifying their proportions (by weight) in soils at the Mars Exploration Rovers landing sites is presented. The procedure utilizes modeled Mössbauer data for iron‐bearing minerals, chemical calculations of Alpha Particle X‐ray Spectrometer data for iron‐absent minerals, and modeling of MiniTES thermal infrared spectra for silica and clays. Two models are formulated, using different assumptions about the mineralogy of sulfur and chlorine: sulfate + chloride, or incorporated in or adsorbed onto schwertmannite + akaganeite. The actual soil mineralogy may be bracketed by these results. Using either model, average dark soils on the Gusev crater plains and on Meridiani Planum are shown to be composed of a mixture of igneous (olivine, pyroxene, plagioclase, Fe‐Ti‐Cr spinels, phosphate) and alteration (amorphous silica, hematite, nanophase oxides, clays, plus sulfate + chloride or oxysulfate + oxychloride) minerals. This assemblage suggests that soil alteration did not occur in situ and that the igneous and alteration components were likely derived from different sources. The (model dependent) mixing ratio of igneous and alteration components is identical at the two sites on opposite sides of the planet, implying that Martian soils may provide a representative mineralogical sampling of the exposed crust.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2010JE003582</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Alterations ; Chlorides ; Clays ; Mars ; Mineralogy ; Minerals ; Planets ; Silicon dioxide ; Soils ; Sulfates</subject><ispartof>Journal of Geophysical Research: Planets, 2010-07, Vol.115 (E7), p.1C-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>Copyright Blackwell Publishing Ltd. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4990-45e00f3efddc5d6b22122d83a007311e4446243990392af2225e5c84da3e19df3</citedby><cites>FETCH-LOGICAL-a4990-45e00f3efddc5d6b22122d83a007311e4446243990392af2225e5c84da3e19df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JE003582$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JE003582$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>McSween Jr, Harry Y.</creatorcontrib><creatorcontrib>McGlynn, Ian O.</creatorcontrib><creatorcontrib>Rogers, A. Deane</creatorcontrib><title>Determining the modal mineralogy of Martian soils</title><title>Journal of Geophysical Research: Planets</title><addtitle>J. Geophys. Res</addtitle><description>A method for identifying the major and minor minerals and quantifying their proportions (by weight) in soils at the Mars Exploration Rovers landing sites is presented. The procedure utilizes modeled Mössbauer data for iron‐bearing minerals, chemical calculations of Alpha Particle X‐ray Spectrometer data for iron‐absent minerals, and modeling of MiniTES thermal infrared spectra for silica and clays. Two models are formulated, using different assumptions about the mineralogy of sulfur and chlorine: sulfate + chloride, or incorporated in or adsorbed onto schwertmannite + akaganeite. The actual soil mineralogy may be bracketed by these results. Using either model, average dark soils on the Gusev crater plains and on Meridiani Planum are shown to be composed of a mixture of igneous (olivine, pyroxene, plagioclase, Fe‐Ti‐Cr spinels, phosphate) and alteration (amorphous silica, hematite, nanophase oxides, clays, plus sulfate + chloride or oxysulfate + oxychloride) minerals. This assemblage suggests that soil alteration did not occur in situ and that the igneous and alteration components were likely derived from different sources. The (model dependent) mixing ratio of igneous and alteration components is identical at the two sites on opposite sides of the planet, implying that Martian soils may provide a representative mineralogical sampling of the exposed crust.</description><subject>Alterations</subject><subject>Chlorides</subject><subject>Clays</subject><subject>Mars</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Planets</subject><subject>Silicon dioxide</subject><subject>Soils</subject><subject>Sulfates</subject><issn>0148-0227</issn><issn>2169-9097</issn><issn>2156-2202</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqN0FFLwzAQAOAgCo65N39AwRcfrF4uSdM-6pzVMRXc1McQ23R2du1MOnT_3khFxAfxXg6O7-64I2SfwjEFTE4QKIxHAEzEuEV6SEUUIgJukx5QHoeAKHfJwLkF-OAi4kB7hJ6b1thlWZf1PGifTbBscl0FvmCsrpr5JmiK4FrbttR14Jqycntkp9CVM4Ov3Cf3F6PZ8DKc3KZXw9NJqHmSQMiFASiYKfI8E3n0hEgR85hpAMkoNZzzCDnzlCWoC0QURmQxzzUzNMkL1ieH3dyVbV7XxrVqWbrMVJWuTbN2ikaxkDGNGP0PBb8NJPf04BddNGtb-0O8kpzLmEexV0edymzjnDWFWtlyqe1GUVCf31Y_v-05dvytrMzmT6vG6d0Ipb-6T8KuqXStef9u0vZFRZJJoR5vUjVNH86ns8mZ4uwDGlWLcg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>McSween Jr, Harry Y.</creator><creator>McGlynn, Ian O.</creator><creator>Rogers, A. Deane</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201007</creationdate><title>Determining the modal mineralogy of Martian soils</title><author>McSween Jr, Harry Y. ; McGlynn, Ian O. ; Rogers, A. Deane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4990-45e00f3efddc5d6b22122d83a007311e4446243990392af2225e5c84da3e19df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alterations</topic><topic>Chlorides</topic><topic>Clays</topic><topic>Mars</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Planets</topic><topic>Silicon dioxide</topic><topic>Soils</topic><topic>Sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McSween Jr, Harry Y.</creatorcontrib><creatorcontrib>McGlynn, Ian O.</creatorcontrib><creatorcontrib>Rogers, A. Deane</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McSween Jr, Harry Y.</au><au>McGlynn, Ian O.</au><au>Rogers, A. Deane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the modal mineralogy of Martian soils</atitle><jtitle>Journal of Geophysical Research: Planets</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-07</date><risdate>2010</risdate><volume>115</volume><issue>E7</issue><spage>1C</spage><epage>n/a</epage><pages>1C-n/a</pages><issn>0148-0227</issn><issn>2169-9097</issn><eissn>2156-2202</eissn><eissn>2169-9100</eissn><abstract>A method for identifying the major and minor minerals and quantifying their proportions (by weight) in soils at the Mars Exploration Rovers landing sites is presented. The procedure utilizes modeled Mössbauer data for iron‐bearing minerals, chemical calculations of Alpha Particle X‐ray Spectrometer data for iron‐absent minerals, and modeling of MiniTES thermal infrared spectra for silica and clays. Two models are formulated, using different assumptions about the mineralogy of sulfur and chlorine: sulfate + chloride, or incorporated in or adsorbed onto schwertmannite + akaganeite. The actual soil mineralogy may be bracketed by these results. Using either model, average dark soils on the Gusev crater plains and on Meridiani Planum are shown to be composed of a mixture of igneous (olivine, pyroxene, plagioclase, Fe‐Ti‐Cr spinels, phosphate) and alteration (amorphous silica, hematite, nanophase oxides, clays, plus sulfate + chloride or oxysulfate + oxychloride) minerals. This assemblage suggests that soil alteration did not occur in situ and that the igneous and alteration components were likely derived from different sources. The (model dependent) mixing ratio of igneous and alteration components is identical at the two sites on opposite sides of the planet, implying that Martian soils may provide a representative mineralogical sampling of the exposed crust.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JE003582</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Planets, 2010-07, Vol.115 (E7), p.1C-n/a |
issn | 0148-0227 2169-9097 2156-2202 2169-9100 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685781631 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Alterations Chlorides Clays Mars Mineralogy Minerals Planets Silicon dioxide Soils Sulfates |
title | Determining the modal mineralogy of Martian soils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20modal%20mineralogy%20of%20Martian%20soils&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Planets&rft.au=McSween%20Jr,%20Harry%20Y.&rft.date=2010-07&rft.volume=115&rft.issue=E7&rft.spage=1C&rft.epage=n/a&rft.pages=1C-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JE003582&rft_dat=%3Cproquest_cross%3E1685781631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674478468&rft_id=info:pmid/&rfr_iscdi=true |