Local and Global Geometric Structure Preserving and Application to Hyperspectral Image Classification

Locality Preserving Projection (LPP) has shown great efficiency in feature extraction. LPP capturesthe locality by the K-nearest neighborhoods. However, recent progress has demonstrated the importanceof global geometric structure in discriminant analysis. Thus, both the locality and global geometric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-13
Hauptverfasser: Yang, Lina, Li, Chunli, Tang, Yuan Yan, Luo, Huiwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Yang, Lina
Li, Chunli
Tang, Yuan Yan
Luo, Huiwu
description Locality Preserving Projection (LPP) has shown great efficiency in feature extraction. LPP capturesthe locality by the K-nearest neighborhoods. However, recent progress has demonstrated the importanceof global geometric structure in discriminant analysis. Thus, both the locality and global geometricstructure are critical for dimension reduction. In this paper, a novel linear supervised dimensionalityreduction algorithm, called Locality and Global Geometric Structure Preserving (LGGSP)projection, is proposed for dimension reduction. LGGSP encodes not only the local structure informationinto the optimal objective functions, but also the global structure information. To be specific,two adjacent matrices, that is, similarity matrix and variance matrix, are constructed to detect the localintrinsic structure. Besides, a margin matrix is defined to capture the global structure of differentclasses. Finally, the three matrices are integrated into the framework of graph embedding for optimalsolution. The proposed scheme is illustrated using both simulated data points and the well-knownIndian Pines hyperspectral data set, and the experimental results are promising.
doi_str_mv 10.1155/2015/917259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685780734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685780734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-72374d3ab1520a5f70856752d411ab86a4151660796f012cb2f687efd79d1f1c3</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAiCs7pybsUvIhSl5c2TXocQ7fBQEEFbyVLX2ZG19SkVfzvjdaDePH0vsPvPR5fFJ0CuQZgbEIJsEkBnLJiLxoBy9OEQcb3QyY0S4Cmz4fRkfdbQigwEKMIV1bJOpZNFc9ruw5xjnaHnTMqfuhcr7reYXzv0KN7M83mW07btjZKdsY2cWfjxUeLzreoOhf2lzu5wXhWS--N_lHH0YGWtceTnzmOnm5vHmeLZHU3X86mq0SlougSTlOeValcA6NEMs2JYDlntMoA5FrkMgtP5znhRa4JULWmOhccdcWLCjSodBxdDHdbZ1979F25M15hXcsGbe9LyAXjgvA0C_T8D93a3jXhu6A4E1RkBIK6GpRy1nuHumyd2Un3UQIpvyovvyovh8qDvhz0i2kq-W7-wWcDxkBQy1-YM8JI-gnxRIlD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675828401</pqid></control><display><type>article</type><title>Local and Global Geometric Structure Preserving and Application to Hyperspectral Image Classification</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Yang, Lina ; Li, Chunli ; Tang, Yuan Yan ; Luo, Huiwu</creator><contributor>Naceur, Hakim</contributor><creatorcontrib>Yang, Lina ; Li, Chunli ; Tang, Yuan Yan ; Luo, Huiwu ; Naceur, Hakim</creatorcontrib><description>Locality Preserving Projection (LPP) has shown great efficiency in feature extraction. LPP capturesthe locality by the K-nearest neighborhoods. However, recent progress has demonstrated the importanceof global geometric structure in discriminant analysis. Thus, both the locality and global geometricstructure are critical for dimension reduction. In this paper, a novel linear supervised dimensionalityreduction algorithm, called Locality and Global Geometric Structure Preserving (LGGSP)projection, is proposed for dimension reduction. LGGSP encodes not only the local structure informationinto the optimal objective functions, but also the global structure information. To be specific,two adjacent matrices, that is, similarity matrix and variance matrix, are constructed to detect the localintrinsic structure. Besides, a margin matrix is defined to capture the global structure of differentclasses. Finally, the three matrices are integrated into the framework of graph embedding for optimalsolution. The proposed scheme is illustrated using both simulated data points and the well-knownIndian Pines hyperspectral data set, and the experimental results are promising.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/917259</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computing time ; Data analysis ; Data points ; Discriminant analysis ; Feature extraction ; Hyperspectral imaging ; Image classification ; Mathematical analysis ; Neighborhoods ; Optimization ; Preserving ; Projection ; Reduction</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-13</ispartof><rights>Copyright © 2015 Huiwu Luo et al.</rights><rights>Copyright © 2015 Huiwu Luo et al. Huiwu Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-72374d3ab1520a5f70856752d411ab86a4151660796f012cb2f687efd79d1f1c3</citedby><cites>FETCH-LOGICAL-c389t-72374d3ab1520a5f70856752d411ab86a4151660796f012cb2f687efd79d1f1c3</cites><orcidid>0000-0002-6887-130X ; 0000-0001-9130-5122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Naceur, Hakim</contributor><creatorcontrib>Yang, Lina</creatorcontrib><creatorcontrib>Li, Chunli</creatorcontrib><creatorcontrib>Tang, Yuan Yan</creatorcontrib><creatorcontrib>Luo, Huiwu</creatorcontrib><title>Local and Global Geometric Structure Preserving and Application to Hyperspectral Image Classification</title><title>Mathematical problems in engineering</title><description>Locality Preserving Projection (LPP) has shown great efficiency in feature extraction. LPP capturesthe locality by the K-nearest neighborhoods. However, recent progress has demonstrated the importanceof global geometric structure in discriminant analysis. Thus, both the locality and global geometricstructure are critical for dimension reduction. In this paper, a novel linear supervised dimensionalityreduction algorithm, called Locality and Global Geometric Structure Preserving (LGGSP)projection, is proposed for dimension reduction. LGGSP encodes not only the local structure informationinto the optimal objective functions, but also the global structure information. To be specific,two adjacent matrices, that is, similarity matrix and variance matrix, are constructed to detect the localintrinsic structure. Besides, a margin matrix is defined to capture the global structure of differentclasses. Finally, the three matrices are integrated into the framework of graph embedding for optimalsolution. The proposed scheme is illustrated using both simulated data points and the well-knownIndian Pines hyperspectral data set, and the experimental results are promising.</description><subject>Algorithms</subject><subject>Computing time</subject><subject>Data analysis</subject><subject>Data points</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Mathematical analysis</subject><subject>Neighborhoods</subject><subject>Optimization</subject><subject>Preserving</subject><subject>Projection</subject><subject>Reduction</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MFLwzAUBvAiCs7pybsUvIhSl5c2TXocQ7fBQEEFbyVLX2ZG19SkVfzvjdaDePH0vsPvPR5fFJ0CuQZgbEIJsEkBnLJiLxoBy9OEQcb3QyY0S4Cmz4fRkfdbQigwEKMIV1bJOpZNFc9ruw5xjnaHnTMqfuhcr7reYXzv0KN7M83mW07btjZKdsY2cWfjxUeLzreoOhf2lzu5wXhWS--N_lHH0YGWtceTnzmOnm5vHmeLZHU3X86mq0SlougSTlOeValcA6NEMs2JYDlntMoA5FrkMgtP5znhRa4JULWmOhccdcWLCjSodBxdDHdbZ1979F25M15hXcsGbe9LyAXjgvA0C_T8D93a3jXhu6A4E1RkBIK6GpRy1nuHumyd2Un3UQIpvyovvyovh8qDvhz0i2kq-W7-wWcDxkBQy1-YM8JI-gnxRIlD</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Yang, Lina</creator><creator>Li, Chunli</creator><creator>Tang, Yuan Yan</creator><creator>Luo, Huiwu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6887-130X</orcidid><orcidid>https://orcid.org/0000-0001-9130-5122</orcidid></search><sort><creationdate>20150101</creationdate><title>Local and Global Geometric Structure Preserving and Application to Hyperspectral Image Classification</title><author>Yang, Lina ; Li, Chunli ; Tang, Yuan Yan ; Luo, Huiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-72374d3ab1520a5f70856752d411ab86a4151660796f012cb2f687efd79d1f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computing time</topic><topic>Data analysis</topic><topic>Data points</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Mathematical analysis</topic><topic>Neighborhoods</topic><topic>Optimization</topic><topic>Preserving</topic><topic>Projection</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lina</creatorcontrib><creatorcontrib>Li, Chunli</creatorcontrib><creatorcontrib>Tang, Yuan Yan</creatorcontrib><creatorcontrib>Luo, Huiwu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lina</au><au>Li, Chunli</au><au>Tang, Yuan Yan</au><au>Luo, Huiwu</au><au>Naceur, Hakim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and Global Geometric Structure Preserving and Application to Hyperspectral Image Classification</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Locality Preserving Projection (LPP) has shown great efficiency in feature extraction. LPP capturesthe locality by the K-nearest neighborhoods. However, recent progress has demonstrated the importanceof global geometric structure in discriminant analysis. Thus, both the locality and global geometricstructure are critical for dimension reduction. In this paper, a novel linear supervised dimensionalityreduction algorithm, called Locality and Global Geometric Structure Preserving (LGGSP)projection, is proposed for dimension reduction. LGGSP encodes not only the local structure informationinto the optimal objective functions, but also the global structure information. To be specific,two adjacent matrices, that is, similarity matrix and variance matrix, are constructed to detect the localintrinsic structure. Besides, a margin matrix is defined to capture the global structure of differentclasses. Finally, the three matrices are integrated into the framework of graph embedding for optimalsolution. The proposed scheme is illustrated using both simulated data points and the well-knownIndian Pines hyperspectral data set, and the experimental results are promising.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/917259</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6887-130X</orcidid><orcidid>https://orcid.org/0000-0001-9130-5122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-13
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1685780734
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algorithms
Computing time
Data analysis
Data points
Discriminant analysis
Feature extraction
Hyperspectral imaging
Image classification
Mathematical analysis
Neighborhoods
Optimization
Preserving
Projection
Reduction
title Local and Global Geometric Structure Preserving and Application to Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20Global%20Geometric%20Structure%20Preserving%20and%20Application%20to%20Hyperspectral%20Image%20Classification&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Yang,%20Lina&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/917259&rft_dat=%3Cproquest_cross%3E1685780734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675828401&rft_id=info:pmid/&rfr_iscdi=true