Adaptive h-refinement for reduced-order models
SummaryThis work presents a method to adaptively refine reduced‐order models a posteriori without requiring additional full‐order‐model solves. The technique is analogous to mesh‐adaptive h‐refinement: it enriches the reduced‐basis space online by ‘splitting’ a given basis vector into several vector...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2015-05, Vol.102 (5), p.1192-1210 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1210 |
---|---|
container_issue | 5 |
container_start_page | 1192 |
container_title | International journal for numerical methods in engineering |
container_volume | 102 |
creator | Carlberg, Kevin |
description | SummaryThis work presents a method to adaptively refine reduced‐order models a posteriori without requiring additional full‐order‐model solves. The technique is analogous to mesh‐adaptive h‐refinement: it enriches the reduced‐basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k‐means clustering of the state variables using snapshot data. The method identifies the vectors to split online using a dual‐weighted‐residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large‐scale operations or full‐order‐model solves. Further, it enables the reduced‐order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced‐order model is mathematically equivalent to the original full‐order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.4800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685777882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685777882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3980-3288845dcbc29636d78e907b64ab7a93dba4783ca651fdd7072b0947bc42e6a63</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMWvHhJnWx2k-yxlFqVqhetx5BNZnHrftSkq_bfu6UiKniawzy8zLyEnDIYMYD4oqlxlCiAPTJgkEkKMch9MuhXGU0zxQ7JUQhLAMZS4AMyGjuzWpdvGD1Tj0XZYI3NOipaH3l0nUVHW-_QR3XrsArH5KAwVcCTrzkkj5fTh8kVnd_PrifjObU8U0B5rJRKUmdzG2eCCycVZiBzkZhcmoy73CRScWtEygrnJMg4hyyRuU1iFEbwITnf5a58-9phWOu6DBaryjTYdkEzoVIppVJxT8_-0GXb-aa_rleSMWCS_wi0vg2h_1SvfFkbv9EM9LY43Rent8X1lO7oe1nh5l-n726nv30Z1vjx7Y1_0UJymeqnu5kWcKMWwBea8U9_2Hsa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671101736</pqid></control><display><type>article</type><title>Adaptive h-refinement for reduced-order models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carlberg, Kevin</creator><creatorcontrib>Carlberg, Kevin</creatorcontrib><description>SummaryThis work presents a method to adaptively refine reduced‐order models a posteriori without requiring additional full‐order‐model solves. The technique is analogous to mesh‐adaptive h‐refinement: it enriches the reduced‐basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k‐means clustering of the state variables using snapshot data. The method identifies the vectors to split online using a dual‐weighted‐residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large‐scale operations or full‐order‐model solves. Further, it enables the reduced‐order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced‐order model is mathematically equivalent to the original full‐order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4800</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>adaptive refinement ; adjoint error estimation ; Burgers equation ; clustering ; dual-weighted residual ; Errors ; h-refinement ; Hierarchies ; Mathematical analysis ; Mathematical models ; model reduction ; Online ; Splitting ; Tolerances ; Vectors (mathematics)</subject><ispartof>International journal for numerical methods in engineering, 2015-05, Vol.102 (5), p.1192-1210</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3980-3288845dcbc29636d78e907b64ab7a93dba4783ca651fdd7072b0947bc42e6a63</citedby><cites>FETCH-LOGICAL-c3980-3288845dcbc29636d78e907b64ab7a93dba4783ca651fdd7072b0947bc42e6a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4800$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4800$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Carlberg, Kevin</creatorcontrib><title>Adaptive h-refinement for reduced-order models</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SummaryThis work presents a method to adaptively refine reduced‐order models a posteriori without requiring additional full‐order‐model solves. The technique is analogous to mesh‐adaptive h‐refinement: it enriches the reduced‐basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k‐means clustering of the state variables using snapshot data. The method identifies the vectors to split online using a dual‐weighted‐residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large‐scale operations or full‐order‐model solves. Further, it enables the reduced‐order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced‐order model is mathematically equivalent to the original full‐order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>adaptive refinement</subject><subject>adjoint error estimation</subject><subject>Burgers equation</subject><subject>clustering</subject><subject>dual-weighted residual</subject><subject>Errors</subject><subject>h-refinement</subject><subject>Hierarchies</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>model reduction</subject><subject>Online</subject><subject>Splitting</subject><subject>Tolerances</subject><subject>Vectors (mathematics)</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMWvHhJnWx2k-yxlFqVqhetx5BNZnHrftSkq_bfu6UiKniawzy8zLyEnDIYMYD4oqlxlCiAPTJgkEkKMch9MuhXGU0zxQ7JUQhLAMZS4AMyGjuzWpdvGD1Tj0XZYI3NOipaH3l0nUVHW-_QR3XrsArH5KAwVcCTrzkkj5fTh8kVnd_PrifjObU8U0B5rJRKUmdzG2eCCycVZiBzkZhcmoy73CRScWtEygrnJMg4hyyRuU1iFEbwITnf5a58-9phWOu6DBaryjTYdkEzoVIppVJxT8_-0GXb-aa_rleSMWCS_wi0vg2h_1SvfFkbv9EM9LY43Rent8X1lO7oe1nh5l-n726nv30Z1vjx7Y1_0UJymeqnu5kWcKMWwBea8U9_2Hsa</recordid><startdate>20150504</startdate><enddate>20150504</enddate><creator>Carlberg, Kevin</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150504</creationdate><title>Adaptive h-refinement for reduced-order models</title><author>Carlberg, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3980-3288845dcbc29636d78e907b64ab7a93dba4783ca651fdd7072b0947bc42e6a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adaptive refinement</topic><topic>adjoint error estimation</topic><topic>Burgers equation</topic><topic>clustering</topic><topic>dual-weighted residual</topic><topic>Errors</topic><topic>h-refinement</topic><topic>Hierarchies</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>model reduction</topic><topic>Online</topic><topic>Splitting</topic><topic>Tolerances</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlberg, Kevin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlberg, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive h-refinement for reduced-order models</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2015-05-04</date><risdate>2015</risdate><volume>102</volume><issue>5</issue><spage>1192</spage><epage>1210</epage><pages>1192-1210</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SummaryThis work presents a method to adaptively refine reduced‐order models a posteriori without requiring additional full‐order‐model solves. The technique is analogous to mesh‐adaptive h‐refinement: it enriches the reduced‐basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k‐means clustering of the state variables using snapshot data. The method identifies the vectors to split online using a dual‐weighted‐residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large‐scale operations or full‐order‐model solves. Further, it enables the reduced‐order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced‐order model is mathematically equivalent to the original full‐order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4800</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2015-05, Vol.102 (5), p.1192-1210 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685777882 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | adaptive refinement adjoint error estimation Burgers equation clustering dual-weighted residual Errors h-refinement Hierarchies Mathematical analysis Mathematical models model reduction Online Splitting Tolerances Vectors (mathematics) |
title | Adaptive h-refinement for reduced-order models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20h-refinement%20for%20reduced-order%20models&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Carlberg,%20Kevin&rft.date=2015-05-04&rft.volume=102&rft.issue=5&rft.spage=1192&rft.epage=1210&rft.pages=1192-1210&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4800&rft_dat=%3Cproquest_cross%3E1685777882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671101736&rft_id=info:pmid/&rfr_iscdi=true |