An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models
SummaryAn adaptive and efficient approach for constructing reduced‐order models (ROMs) that are robust to changes in parameters is developed. The approach is based on a greedy sampling of the underlying high‐dimensional model (HDM) together with an efficient procedure for exploring the configuration...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2015-05, Vol.102 (5), p.1262-1292 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1292 |
---|---|
container_issue | 5 |
container_start_page | 1262 |
container_title | International journal for numerical methods in engineering |
container_volume | 102 |
creator | Paul-Dubois-Taine, A. Amsallem, D. |
description | SummaryAn adaptive and efficient approach for constructing reduced‐order models (ROMs) that are robust to changes in parameters is developed. The approach is based on a greedy sampling of the underlying high‐dimensional model (HDM) together with an efficient procedure for exploring the configuration space and identifying parameters for which the error is likely to be high. Because this exploration is based on a surrogate model for an error indicator, it is amenable to a fast training phase. Furthermore, a model for the exact error based on the error indicator is constructed and used to determine when the greedy procedure reaches a desired error tolerance. An efficient procedure for updating the reduced‐order basis constructed by proper orthogonal decomposition is also introduced in this paper, avoiding the cost associated with computing large‐scale singular value decompositions. The proposed procedure is then shown to require less evaluations of a posteriori error estimators than the classical procedure in order to identify locations of the parameter space to be sampled. It is illustrated on the training of parametric ROMs for three linear and nonlinear mechanical systems, including the realistic prediction of the response of a V‐hull vehicle to underbody blasts. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.4759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685773289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3648544151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3649-de9213ff02efd09e5c783f1dd512c178b3e4111f275df518da26903913aace2e3</originalsourceid><addsrcrecordid>eNp10EFPHCEUB3DSaNJVm_QjkPTSy1geLMNwNEa3TVZ7cNXeCIWHxc4MK8yq--2L0Zho0tM78OPl__6EfAZ2CIzxb-OAh3Ml9QcyA6ZVwzhTO2RWn3QjdQcfyV4pt4wBSCZmJByN1Hq7nuI9Ujt6iiFEF3Gc6E1G9Fu6zsmh32SkIWU6_UGaqh5sT6ds4xjHG5oCXdtsB5xydDRXXX80KXvMdEge-3JAdoPtC356mfvk8vRkdfy9Wf5c_Dg-WjZOtHPdeNQcRAiMY_BMo3SqEwG8l8AdqO63wDkABK6kDxI6b3mrmdAgrHXIUeyTr897a-q7DZbJDLE47Hs7YtoUA20nlRK805V-eUdv0yaPNV1VCoCBqlleF7qcSskYzDrX4_PWADNPhZtauHkqvNLmmT7EHrf_deb87OStj2XCx1dv81_TKqGkuT5fmNXyl16tri5MK_4BGLuROw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671101721</pqid></control><display><type>article</type><title>An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Paul-Dubois-Taine, A. ; Amsallem, D.</creator><creatorcontrib>Paul-Dubois-Taine, A. ; Amsallem, D.</creatorcontrib><description>SummaryAn adaptive and efficient approach for constructing reduced‐order models (ROMs) that are robust to changes in parameters is developed. The approach is based on a greedy sampling of the underlying high‐dimensional model (HDM) together with an efficient procedure for exploring the configuration space and identifying parameters for which the error is likely to be high. Because this exploration is based on a surrogate model for an error indicator, it is amenable to a fast training phase. Furthermore, a model for the exact error based on the error indicator is constructed and used to determine when the greedy procedure reaches a desired error tolerance. An efficient procedure for updating the reduced‐order basis constructed by proper orthogonal decomposition is also introduced in this paper, avoiding the cost associated with computing large‐scale singular value decompositions. The proposed procedure is then shown to require less evaluations of a posteriori error estimators than the classical procedure in order to identify locations of the parameter space to be sampled. It is illustrated on the training of parametric ROMs for three linear and nonlinear mechanical systems, including the realistic prediction of the response of a V‐hull vehicle to underbody blasts. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4759</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>adaptive POD-greedy procedure ; adaptive sampling ; Computing costs ; Construction costs ; error estimation ; Errors ; Indicators ; Mathematical models ; Mechanical systems ; projection-based model reduction ; Sampling ; surrogate modeling ; Training ; Underbodies</subject><ispartof>International journal for numerical methods in engineering, 2015-05, Vol.102 (5), p.1262-1292</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3649-de9213ff02efd09e5c783f1dd512c178b3e4111f275df518da26903913aace2e3</citedby><cites>FETCH-LOGICAL-c3649-de9213ff02efd09e5c783f1dd512c178b3e4111f275df518da26903913aace2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4759$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4759$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Paul-Dubois-Taine, A.</creatorcontrib><creatorcontrib>Amsallem, D.</creatorcontrib><title>An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SummaryAn adaptive and efficient approach for constructing reduced‐order models (ROMs) that are robust to changes in parameters is developed. The approach is based on a greedy sampling of the underlying high‐dimensional model (HDM) together with an efficient procedure for exploring the configuration space and identifying parameters for which the error is likely to be high. Because this exploration is based on a surrogate model for an error indicator, it is amenable to a fast training phase. Furthermore, a model for the exact error based on the error indicator is constructed and used to determine when the greedy procedure reaches a desired error tolerance. An efficient procedure for updating the reduced‐order basis constructed by proper orthogonal decomposition is also introduced in this paper, avoiding the cost associated with computing large‐scale singular value decompositions. The proposed procedure is then shown to require less evaluations of a posteriori error estimators than the classical procedure in order to identify locations of the parameter space to be sampled. It is illustrated on the training of parametric ROMs for three linear and nonlinear mechanical systems, including the realistic prediction of the response of a V‐hull vehicle to underbody blasts. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>adaptive POD-greedy procedure</subject><subject>adaptive sampling</subject><subject>Computing costs</subject><subject>Construction costs</subject><subject>error estimation</subject><subject>Errors</subject><subject>Indicators</subject><subject>Mathematical models</subject><subject>Mechanical systems</subject><subject>projection-based model reduction</subject><subject>Sampling</subject><subject>surrogate modeling</subject><subject>Training</subject><subject>Underbodies</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10EFPHCEUB3DSaNJVm_QjkPTSy1geLMNwNEa3TVZ7cNXeCIWHxc4MK8yq--2L0Zho0tM78OPl__6EfAZ2CIzxb-OAh3Ml9QcyA6ZVwzhTO2RWn3QjdQcfyV4pt4wBSCZmJByN1Hq7nuI9Ujt6iiFEF3Gc6E1G9Fu6zsmh32SkIWU6_UGaqh5sT6ds4xjHG5oCXdtsB5xydDRXXX80KXvMdEge-3JAdoPtC356mfvk8vRkdfy9Wf5c_Dg-WjZOtHPdeNQcRAiMY_BMo3SqEwG8l8AdqO63wDkABK6kDxI6b3mrmdAgrHXIUeyTr897a-q7DZbJDLE47Hs7YtoUA20nlRK805V-eUdv0yaPNV1VCoCBqlleF7qcSskYzDrX4_PWADNPhZtauHkqvNLmmT7EHrf_deb87OStj2XCx1dv81_TKqGkuT5fmNXyl16tri5MK_4BGLuROw</recordid><startdate>20150504</startdate><enddate>20150504</enddate><creator>Paul-Dubois-Taine, A.</creator><creator>Amsallem, D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150504</creationdate><title>An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models</title><author>Paul-Dubois-Taine, A. ; Amsallem, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3649-de9213ff02efd09e5c783f1dd512c178b3e4111f275df518da26903913aace2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adaptive POD-greedy procedure</topic><topic>adaptive sampling</topic><topic>Computing costs</topic><topic>Construction costs</topic><topic>error estimation</topic><topic>Errors</topic><topic>Indicators</topic><topic>Mathematical models</topic><topic>Mechanical systems</topic><topic>projection-based model reduction</topic><topic>Sampling</topic><topic>surrogate modeling</topic><topic>Training</topic><topic>Underbodies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul-Dubois-Taine, A.</creatorcontrib><creatorcontrib>Amsallem, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul-Dubois-Taine, A.</au><au>Amsallem, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2015-05-04</date><risdate>2015</risdate><volume>102</volume><issue>5</issue><spage>1262</spage><epage>1292</epage><pages>1262-1292</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SummaryAn adaptive and efficient approach for constructing reduced‐order models (ROMs) that are robust to changes in parameters is developed. The approach is based on a greedy sampling of the underlying high‐dimensional model (HDM) together with an efficient procedure for exploring the configuration space and identifying parameters for which the error is likely to be high. Because this exploration is based on a surrogate model for an error indicator, it is amenable to a fast training phase. Furthermore, a model for the exact error based on the error indicator is constructed and used to determine when the greedy procedure reaches a desired error tolerance. An efficient procedure for updating the reduced‐order basis constructed by proper orthogonal decomposition is also introduced in this paper, avoiding the cost associated with computing large‐scale singular value decompositions. The proposed procedure is then shown to require less evaluations of a posteriori error estimators than the classical procedure in order to identify locations of the parameter space to be sampled. It is illustrated on the training of parametric ROMs for three linear and nonlinear mechanical systems, including the realistic prediction of the response of a V‐hull vehicle to underbody blasts. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4759</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2015-05, Vol.102 (5), p.1262-1292 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685773289 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | adaptive POD-greedy procedure adaptive sampling Computing costs Construction costs error estimation Errors Indicators Mathematical models Mechanical systems projection-based model reduction Sampling surrogate modeling Training Underbodies |
title | An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20and%20efficient%20greedy%20procedure%20for%20the%20optimal%20training%20of%20parametric%20reduced-order%20models&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Paul-Dubois-Taine,%20A.&rft.date=2015-05-04&rft.volume=102&rft.issue=5&rft.spage=1262&rft.epage=1292&rft.pages=1262-1292&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4759&rft_dat=%3Cproquest_cross%3E3648544151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671101721&rft_id=info:pmid/&rfr_iscdi=true |