Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature
► Grass-like TiO2 nanostructure films were prepared using liquid phase deposition method. ► The growth temperature used in synthesizing the TiO2 nanoparticles samples were 25 (room temperature), 50, 60 and 90°C. ► The samples were in anatase form eventhough the morphology has changed. ► The optical...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2013-04, Vol.270, p.109-114 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 109 |
container_title | Applied surface science |
container_volume | 270 |
creator | Umar, A.A. Rahman, M.Y.A. Saad, S.K.M. Salleh, M.M. Oyama, M. |
description | ► Grass-like TiO2 nanostructure films were prepared using liquid phase deposition method. ► The growth temperature used in synthesizing the TiO2 nanoparticles samples were 25 (room temperature), 50, 60 and 90°C. ► The samples were in anatase form eventhough the morphology has changed. ► The optical absorption sensitivity and energy gap increase with the growth temperature.
TiO2 nanoparticles with various morphologies have been synthesized under various temperature conditions, namely 25, 50, 60 and 90°C via a liquid phase deposition technique. The liquid phase deposition technique is an electroless deposition of TiO2 onto the substrate surface via a unique hydrolysis of titanium complexes in the presence of H3BO3. FESEM characterization on the samples showed that, under the temperature treatment, the nanostructures morphology transformed from grass-like to agglomerated spherical-like shape with the increased of the temperature. The XRD analysis performed on these samples show that all of the samples were anatase and unmodified with the change in the morphology. The optical absorption window of the TiO2 nanostructures films was also found to enlarge with the increasing of the growth temperature, resulting from the structure modification. Owing to its simplicity, the present technique may produce TiO2 nanoparticles with a variety of morphologies for use in photocatalyst and solar cell applications. |
doi_str_mv | 10.1016/j.apsusc.2012.12.128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685771740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433212022933</els_id><sourcerecordid>1685771740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-2e1bc2117d9822ab5c40b4fed58055ea9e18e668f085ebe4992b89d2ff6fc7733</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw-9CF66Jmnaph4EkfUPLOhBzyFNJ27WblszqeK3N27FozAwh_m995hHyCmjC0ZZcbFZ6AFHNAtOGV_sRu6RGZNllua5FPtkFrEqFVnGD8kR4oZGMF5n5OXJw6C9Dq7vkt4mr14jpq17g-TZPfKk012PwY8mjB6SsHZdYl27xctkaS2YMGn6z7BOAmwHiE4RPCYHVrcIJ797Tl5ul8839-nq8e7h5nqVGl5VIeXAasMZK5tKcq7r3AhaCwtNLmmeg66ASSgKaanMoQZRVbyWVcOtLawpyyybk_PJd_D9-wgY1NahgbbVHfQjKlbIvCxZKWhExYQa3yN6sGrwbqv9l2JU_bSoNmpqUf20qHYjo-zsN0Gj0a31ujMO_7S8ZIKxTETuauIgvvvhwCs0DjoDjfOxJtX07v-gb5HCiss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685771740</pqid></control><display><type>article</type><title>Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Umar, A.A. ; Rahman, M.Y.A. ; Saad, S.K.M. ; Salleh, M.M. ; Oyama, M.</creator><creatorcontrib>Umar, A.A. ; Rahman, M.Y.A. ; Saad, S.K.M. ; Salleh, M.M. ; Oyama, M.</creatorcontrib><description>► Grass-like TiO2 nanostructure films were prepared using liquid phase deposition method. ► The growth temperature used in synthesizing the TiO2 nanoparticles samples were 25 (room temperature), 50, 60 and 90°C. ► The samples were in anatase form eventhough the morphology has changed. ► The optical absorption sensitivity and energy gap increase with the growth temperature.
TiO2 nanoparticles with various morphologies have been synthesized under various temperature conditions, namely 25, 50, 60 and 90°C via a liquid phase deposition technique. The liquid phase deposition technique is an electroless deposition of TiO2 onto the substrate surface via a unique hydrolysis of titanium complexes in the presence of H3BO3. FESEM characterization on the samples showed that, under the temperature treatment, the nanostructures morphology transformed from grass-like to agglomerated spherical-like shape with the increased of the temperature. The XRD analysis performed on these samples show that all of the samples were anatase and unmodified with the change in the morphology. The optical absorption window of the TiO2 nanostructures films was also found to enlarge with the increasing of the growth temperature, resulting from the structure modification. Owing to its simplicity, the present technique may produce TiO2 nanoparticles with a variety of morphologies for use in photocatalyst and solar cell applications.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2012.12.128</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agglomeration ; Anatase ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Liquid phase deposition ; Liquid phase deposition (LPD) ; Morphology ; Nanoparticles ; Nanostructure ; Physics ; Shape-controlled growth ; Temperature effect ; Thin films ; TiO2 ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Applied surface science, 2013-04, Vol.270, p.109-114</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-2e1bc2117d9822ab5c40b4fed58055ea9e18e668f085ebe4992b89d2ff6fc7733</citedby><cites>FETCH-LOGICAL-c299t-2e1bc2117d9822ab5c40b4fed58055ea9e18e668f085ebe4992b89d2ff6fc7733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169433212022933$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27141134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Umar, A.A.</creatorcontrib><creatorcontrib>Rahman, M.Y.A.</creatorcontrib><creatorcontrib>Saad, S.K.M.</creatorcontrib><creatorcontrib>Salleh, M.M.</creatorcontrib><creatorcontrib>Oyama, M.</creatorcontrib><title>Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature</title><title>Applied surface science</title><description>► Grass-like TiO2 nanostructure films were prepared using liquid phase deposition method. ► The growth temperature used in synthesizing the TiO2 nanoparticles samples were 25 (room temperature), 50, 60 and 90°C. ► The samples were in anatase form eventhough the morphology has changed. ► The optical absorption sensitivity and energy gap increase with the growth temperature.
TiO2 nanoparticles with various morphologies have been synthesized under various temperature conditions, namely 25, 50, 60 and 90°C via a liquid phase deposition technique. The liquid phase deposition technique is an electroless deposition of TiO2 onto the substrate surface via a unique hydrolysis of titanium complexes in the presence of H3BO3. FESEM characterization on the samples showed that, under the temperature treatment, the nanostructures morphology transformed from grass-like to agglomerated spherical-like shape with the increased of the temperature. The XRD analysis performed on these samples show that all of the samples were anatase and unmodified with the change in the morphology. The optical absorption window of the TiO2 nanostructures films was also found to enlarge with the increasing of the growth temperature, resulting from the structure modification. Owing to its simplicity, the present technique may produce TiO2 nanoparticles with a variety of morphologies for use in photocatalyst and solar cell applications.</description><subject>Agglomeration</subject><subject>Anatase</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Liquid phase deposition</subject><subject>Liquid phase deposition (LPD)</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Shape-controlled growth</subject><subject>Temperature effect</subject><subject>Thin films</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw-9CF66Jmnaph4EkfUPLOhBzyFNJ27WblszqeK3N27FozAwh_m995hHyCmjC0ZZcbFZ6AFHNAtOGV_sRu6RGZNllua5FPtkFrEqFVnGD8kR4oZGMF5n5OXJw6C9Dq7vkt4mr14jpq17g-TZPfKk012PwY8mjB6SsHZdYl27xctkaS2YMGn6z7BOAmwHiE4RPCYHVrcIJ797Tl5ul8839-nq8e7h5nqVGl5VIeXAasMZK5tKcq7r3AhaCwtNLmmeg66ASSgKaanMoQZRVbyWVcOtLawpyyybk_PJd_D9-wgY1NahgbbVHfQjKlbIvCxZKWhExYQa3yN6sGrwbqv9l2JU_bSoNmpqUf20qHYjo-zsN0Gj0a31ujMO_7S8ZIKxTETuauIgvvvhwCs0DjoDjfOxJtX07v-gb5HCiss</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Umar, A.A.</creator><creator>Rahman, M.Y.A.</creator><creator>Saad, S.K.M.</creator><creator>Salleh, M.M.</creator><creator>Oyama, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature</title><author>Umar, A.A. ; Rahman, M.Y.A. ; Saad, S.K.M. ; Salleh, M.M. ; Oyama, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-2e1bc2117d9822ab5c40b4fed58055ea9e18e668f085ebe4992b89d2ff6fc7733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agglomeration</topic><topic>Anatase</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Liquid phase deposition</topic><topic>Liquid phase deposition (LPD)</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Shape-controlled growth</topic><topic>Temperature effect</topic><topic>Thin films</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umar, A.A.</creatorcontrib><creatorcontrib>Rahman, M.Y.A.</creatorcontrib><creatorcontrib>Saad, S.K.M.</creatorcontrib><creatorcontrib>Salleh, M.M.</creatorcontrib><creatorcontrib>Oyama, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umar, A.A.</au><au>Rahman, M.Y.A.</au><au>Saad, S.K.M.</au><au>Salleh, M.M.</au><au>Oyama, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature</atitle><jtitle>Applied surface science</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>270</volume><spage>109</spage><epage>114</epage><pages>109-114</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>► Grass-like TiO2 nanostructure films were prepared using liquid phase deposition method. ► The growth temperature used in synthesizing the TiO2 nanoparticles samples were 25 (room temperature), 50, 60 and 90°C. ► The samples were in anatase form eventhough the morphology has changed. ► The optical absorption sensitivity and energy gap increase with the growth temperature.
TiO2 nanoparticles with various morphologies have been synthesized under various temperature conditions, namely 25, 50, 60 and 90°C via a liquid phase deposition technique. The liquid phase deposition technique is an electroless deposition of TiO2 onto the substrate surface via a unique hydrolysis of titanium complexes in the presence of H3BO3. FESEM characterization on the samples showed that, under the temperature treatment, the nanostructures morphology transformed from grass-like to agglomerated spherical-like shape with the increased of the temperature. The XRD analysis performed on these samples show that all of the samples were anatase and unmodified with the change in the morphology. The optical absorption window of the TiO2 nanostructures films was also found to enlarge with the increasing of the growth temperature, resulting from the structure modification. Owing to its simplicity, the present technique may produce TiO2 nanoparticles with a variety of morphologies for use in photocatalyst and solar cell applications.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2012.12.128</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2013-04, Vol.270, p.109-114 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685771740 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Agglomeration Anatase Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Liquid phase deposition Liquid phase deposition (LPD) Morphology Nanoparticles Nanostructure Physics Shape-controlled growth Temperature effect Thin films TiO2 Titanium dioxide X-ray diffraction |
title | Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20grass-like%20TiO2%20nanostructure%20thin%20films:%20Effect%20of%20growth%20temperature&rft.jtitle=Applied%20surface%20science&rft.au=Umar,%20A.A.&rft.date=2013-04-01&rft.volume=270&rft.spage=109&rft.epage=114&rft.pages=109-114&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2012.12.128&rft_dat=%3Cproquest_cross%3E1685771740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685771740&rft_id=info:pmid/&rft_els_id=S0169433212022933&rfr_iscdi=true |