Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things

This paper addresses missing value imputation for the Internet of Things (IoT). Nowadays, the IoT has been used widely and commonly by a variety of domains, such as transportation and logistics domain and healthcare domain. However, missing values are very common in the IoT for a variety of reasons,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-8
Hauptverfasser: Wang, Feng, Hu, Liang, Xiong, Weiqing, Yan, Xiaobo, Zhao, Kuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Wang, Feng
Hu, Liang
Xiong, Weiqing
Yan, Xiaobo
Zhao, Kuo
description This paper addresses missing value imputation for the Internet of Things (IoT). Nowadays, the IoT has been used widely and commonly by a variety of domains, such as transportation and logistics domain and healthcare domain. However, missing values are very common in the IoT for a variety of reasons, which results in the fact that the experimental data are incomplete. As a result of this, some work, which is related to the data of the IoT, can’t be carried out normally. And it leads to the reduction in the accuracy and reliability of the data analysis results. This paper, for the characteristics of the data itself and the features of missing data in IoT, divides the missing data into three types and defines three corresponding missing value imputation problems. Then, we propose three new models to solve the corresponding problems, and they are model of missing value imputation based on context and linear mean (MCL), model of missing value imputation based on binary search (MBS), and model of missing value imputation based on Gaussian mixture model (MGI). Experimental results showed that the three models can improve the accuracy, reliability, and stability of missing value imputation greatly and effectively.
doi_str_mv 10.1155/2015/548605
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685768214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685768214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8e11e6bc4ce21963992eb9f6ac1e8b3c5608394428efa24034f6d637f56828d53</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVk3dZ8CJK7M5-ZXPUorXQ4sEq3sI2mdiUNKm7Ceq_d0s8iBdPM4dnhpmXkFNg1wBKjTgDNVLSaKb2yACUFpECGe-HnnEZARevh-TI-zVjHBSYAXmal96X9Rt9sVWHdLrZdq1ty6amt9ZjTkMzsV0gtqbz8rPtHNJ5k2NFi8bRdhVG6hZdjS1tCrpYhVX-mBwUtvJ48lOH5Pn-bjF-iGaPk-n4ZhZlUqk2MgiAepnJDDkkWiQJx2VSaJsBmqXIlGZGJFJyg4XlkglZ6FyLuFDacJMrMSQX_d6ta9479G26KX2GVWVrbDqfgjYqDhZkoOd_6LrpXB2uC0oLmRgmk6CuepW5xnuHRbp15ca6rxRYugs43QWc9gEHfdnr8HRuP8p_8FmPMZDwzy8cS-AgvgErn4Ip</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663498049</pqid></control><display><type>article</type><title>Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Wang, Feng ; Hu, Liang ; Xiong, Weiqing ; Yan, Xiaobo ; Zhao, Kuo</creator><contributor>Hanne, Thomas</contributor><creatorcontrib>Wang, Feng ; Hu, Liang ; Xiong, Weiqing ; Yan, Xiaobo ; Zhao, Kuo ; Hanne, Thomas</creatorcontrib><description>This paper addresses missing value imputation for the Internet of Things (IoT). Nowadays, the IoT has been used widely and commonly by a variety of domains, such as transportation and logistics domain and healthcare domain. However, missing values are very common in the IoT for a variety of reasons, which results in the fact that the experimental data are incomplete. As a result of this, some work, which is related to the data of the IoT, can’t be carried out normally. And it leads to the reduction in the accuracy and reliability of the data analysis results. This paper, for the characteristics of the data itself and the features of missing data in IoT, divides the missing data into three types and defines three corresponding missing value imputation problems. Then, we propose three new models to solve the corresponding problems, and they are model of missing value imputation based on context and linear mean (MCL), model of missing value imputation based on binary search (MBS), and model of missing value imputation based on Gaussian mixture model (MGI). Experimental results showed that the three models can improve the accuracy, reliability, and stability of missing value imputation greatly and effectively.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/548605</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Clustering ; Computer science ; Data analysis ; Data processing ; Experiments ; Gaussian ; Grants ; Health care ; Internet ; Internet of Things ; Logistics ; Mathematical models ; Missing data ; Mixtures ; Probabilistic models ; Reliability ; Sensors ; Transportation ; Wireless networks</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-8</ispartof><rights>Copyright © 2015 Xiaobo Yan et al.</rights><rights>Copyright © 2015 Xiaobo Yan et al. Xiaobo Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8e11e6bc4ce21963992eb9f6ac1e8b3c5608394428efa24034f6d637f56828d53</citedby><cites>FETCH-LOGICAL-c455t-8e11e6bc4ce21963992eb9f6ac1e8b3c5608394428efa24034f6d637f56828d53</cites><orcidid>0000-0001-5584-7442 ; 0000-0003-0412-7554 ; 0000-0001-8540-5557 ; 0000-0003-4465-9854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Hanne, Thomas</contributor><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Xiong, Weiqing</creatorcontrib><creatorcontrib>Yan, Xiaobo</creatorcontrib><creatorcontrib>Zhao, Kuo</creatorcontrib><title>Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things</title><title>Mathematical problems in engineering</title><description>This paper addresses missing value imputation for the Internet of Things (IoT). Nowadays, the IoT has been used widely and commonly by a variety of domains, such as transportation and logistics domain and healthcare domain. However, missing values are very common in the IoT for a variety of reasons, which results in the fact that the experimental data are incomplete. As a result of this, some work, which is related to the data of the IoT, can’t be carried out normally. And it leads to the reduction in the accuracy and reliability of the data analysis results. This paper, for the characteristics of the data itself and the features of missing data in IoT, divides the missing data into three types and defines three corresponding missing value imputation problems. Then, we propose three new models to solve the corresponding problems, and they are model of missing value imputation based on context and linear mean (MCL), model of missing value imputation based on binary search (MBS), and model of missing value imputation based on Gaussian mixture model (MGI). Experimental results showed that the three models can improve the accuracy, reliability, and stability of missing value imputation greatly and effectively.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Clustering</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Experiments</subject><subject>Gaussian</subject><subject>Grants</subject><subject>Health care</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Logistics</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Mixtures</subject><subject>Probabilistic models</subject><subject>Reliability</subject><subject>Sensors</subject><subject>Transportation</subject><subject>Wireless networks</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVk3dZ8CJK7M5-ZXPUorXQ4sEq3sI2mdiUNKm7Ceq_d0s8iBdPM4dnhpmXkFNg1wBKjTgDNVLSaKb2yACUFpECGe-HnnEZARevh-TI-zVjHBSYAXmal96X9Rt9sVWHdLrZdq1ty6amt9ZjTkMzsV0gtqbz8rPtHNJ5k2NFi8bRdhVG6hZdjS1tCrpYhVX-mBwUtvJ48lOH5Pn-bjF-iGaPk-n4ZhZlUqk2MgiAepnJDDkkWiQJx2VSaJsBmqXIlGZGJFJyg4XlkglZ6FyLuFDacJMrMSQX_d6ta9479G26KX2GVWVrbDqfgjYqDhZkoOd_6LrpXB2uC0oLmRgmk6CuepW5xnuHRbp15ca6rxRYugs43QWc9gEHfdnr8HRuP8p_8FmPMZDwzy8cS-AgvgErn4Ip</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wang, Feng</creator><creator>Hu, Liang</creator><creator>Xiong, Weiqing</creator><creator>Yan, Xiaobo</creator><creator>Zhao, Kuo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5584-7442</orcidid><orcidid>https://orcid.org/0000-0003-0412-7554</orcidid><orcidid>https://orcid.org/0000-0001-8540-5557</orcidid><orcidid>https://orcid.org/0000-0003-4465-9854</orcidid></search><sort><creationdate>20150101</creationdate><title>Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things</title><author>Wang, Feng ; Hu, Liang ; Xiong, Weiqing ; Yan, Xiaobo ; Zhao, Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8e11e6bc4ce21963992eb9f6ac1e8b3c5608394428efa24034f6d637f56828d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Clustering</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Experiments</topic><topic>Gaussian</topic><topic>Grants</topic><topic>Health care</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Logistics</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Mixtures</topic><topic>Probabilistic models</topic><topic>Reliability</topic><topic>Sensors</topic><topic>Transportation</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Xiong, Weiqing</creatorcontrib><creatorcontrib>Yan, Xiaobo</creatorcontrib><creatorcontrib>Zhao, Kuo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feng</au><au>Hu, Liang</au><au>Xiong, Weiqing</au><au>Yan, Xiaobo</au><au>Zhao, Kuo</au><au>Hanne, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper addresses missing value imputation for the Internet of Things (IoT). Nowadays, the IoT has been used widely and commonly by a variety of domains, such as transportation and logistics domain and healthcare domain. However, missing values are very common in the IoT for a variety of reasons, which results in the fact that the experimental data are incomplete. As a result of this, some work, which is related to the data of the IoT, can’t be carried out normally. And it leads to the reduction in the accuracy and reliability of the data analysis results. This paper, for the characteristics of the data itself and the features of missing data in IoT, divides the missing data into three types and defines three corresponding missing value imputation problems. Then, we propose three new models to solve the corresponding problems, and they are model of missing value imputation based on context and linear mean (MCL), model of missing value imputation based on binary search (MBS), and model of missing value imputation based on Gaussian mixture model (MGI). Experimental results showed that the three models can improve the accuracy, reliability, and stability of missing value imputation greatly and effectively.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/548605</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5584-7442</orcidid><orcidid>https://orcid.org/0000-0003-0412-7554</orcidid><orcidid>https://orcid.org/0000-0001-8540-5557</orcidid><orcidid>https://orcid.org/0000-0003-4465-9854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-8
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1685768214
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Accuracy
Algorithms
Clustering
Computer science
Data analysis
Data processing
Experiments
Gaussian
Grants
Health care
Internet
Internet of Things
Logistics
Mathematical models
Missing data
Mixtures
Probabilistic models
Reliability
Sensors
Transportation
Wireless networks
title Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Missing%20Value%20Imputation%20Based%20on%20Gaussian%20Mixture%20Model%20for%20the%20Internet%20of%20Things&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20Feng&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/548605&rft_dat=%3Cproquest_cross%3E1685768214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1663498049&rft_id=info:pmid/&rfr_iscdi=true