Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance

•We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2013-10, Vol.282, p.512-517
Hauptverfasser: Lim, Jae-Hyung, Park, Jin-Hyung, Park, Jea-Gun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 517
container_issue
container_start_page 512
container_title Applied surface science
container_volume 282
creator Lim, Jae-Hyung
Park, Jin-Hyung
Park, Jea-Gun
description •We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate.•The trends of the W oxide layer content and corrosion current density were similar to the trend of polishing rate. Investigating the catalytic effect of Fe(NO3)3 on the performance of tungsten (W) chemical mechanical planarization in H2O2-based acidic slurries, we found that the trend of the polishing rate with increasing Fe(NO3)3 concentration was divided into two regions. The polishing rate in region I (0.10wt%), on the other hand, increased only slightly with increasing Fe(NO3)3 concentration. We suggest the excess ferric ions in the slurry were rapidly supplied to the W surface. Consequently, the addition of Fe(NO3)3 resulted in the rapid formation of the WO3 layer because of the decomposition of H2O2 into O2 by Fe3+ ion, and polishing rate increased with the Fe(NO3)3 concentration. This polishing trend was explained through the opposite trend of static etch rate, the confirmation of the surface morphology, the trend of the WO3 content on the W surface, and the trend of the corrosion potential and the corrosion current density.
doi_str_mv 10.1016/j.apsusc.2013.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685765977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433213011021</els_id><sourcerecordid>1685765977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-b0397dbd684bf34749c5dd46b7ca47b253719649380d43ae7e2ce6b3cf85d6d53</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoZtt_kEPvhTSg13J-rIvhbDkYyHQS3MWsjRqtKwlV7ID7a-Ptl5yDAg0oGdm9D4IfSG4IZiI74dGT3nJpmkxoQ0WDcb0A9qQTtKa845doE3B-ppR2n5ClzkfMCZted0gc-scmLmKrvIphuv9fv-tCn5OeobKxGAgnGofQ1XOvITfeYZQmWcYvdHHegTzrMP_cjrqoJP_t9ITJBfTqMuEz-ij08cMV-d7i57ubn_tHurHn_f73c1jbRjlcz1g2ks7WNGxwVEmWW-4tUwM0mgmh5ZTSXrBetphy6gGCa0BMVDjOm6F5XSLrte5U4p_FsizGn02cCz_grhkRUTHpeC9lAVlK2pSzDmBU1Pyo05_FcHq5FQd1OpUnZwqLFRxWtq-njfoXCK7VOL5_NbbSkGl7FjhfqwclLgvHpLKxkNRYX0qtpWN_v1Fr7K8kEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685765977</pqid></control><display><type>article</type><title>Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance</title><source>Elsevier ScienceDirect Journals</source><creator>Lim, Jae-Hyung ; Park, Jin-Hyung ; Park, Jea-Gun</creator><creatorcontrib>Lim, Jae-Hyung ; Park, Jin-Hyung ; Park, Jea-Gun</creatorcontrib><description>•We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate.•The trends of the W oxide layer content and corrosion current density were similar to the trend of polishing rate. Investigating the catalytic effect of Fe(NO3)3 on the performance of tungsten (W) chemical mechanical planarization in H2O2-based acidic slurries, we found that the trend of the polishing rate with increasing Fe(NO3)3 concentration was divided into two regions. The polishing rate in region I (&lt;0.10wt%) increased rapidly because of the increase of the WO3 layer formed by the reaction of Fe(NO3)3 and H2O2. The polishing rate in region II (&gt;0.10wt%), on the other hand, increased only slightly with increasing Fe(NO3)3 concentration. We suggest the excess ferric ions in the slurry were rapidly supplied to the W surface. Consequently, the addition of Fe(NO3)3 resulted in the rapid formation of the WO3 layer because of the decomposition of H2O2 into O2 by Fe3+ ion, and polishing rate increased with the Fe(NO3)3 concentration. This polishing trend was explained through the opposite trend of static etch rate, the confirmation of the surface morphology, the trend of the WO3 content on the W surface, and the trend of the corrosion potential and the corrosion current density.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2013.06.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalyst ; Chemical mechanical planarization ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Corrosion potential ; Cross-disciplinary physics: materials science; rheology ; Current density ; Etching ; Exact sciences and technology ; Fe(NO3)3 ; Morphology ; Oxidizer ; Physics ; Polishing ; Slurries ; Trends ; Tungsten ; Tungsten oxides</subject><ispartof>Applied surface science, 2013-10, Vol.282, p.512-517</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-b0397dbd684bf34749c5dd46b7ca47b253719649380d43ae7e2ce6b3cf85d6d53</citedby><cites>FETCH-LOGICAL-c435t-b0397dbd684bf34749c5dd46b7ca47b253719649380d43ae7e2ce6b3cf85d6d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2013.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27637784$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Jae-Hyung</creatorcontrib><creatorcontrib>Park, Jin-Hyung</creatorcontrib><creatorcontrib>Park, Jea-Gun</creatorcontrib><title>Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance</title><title>Applied surface science</title><description>•We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate.•The trends of the W oxide layer content and corrosion current density were similar to the trend of polishing rate. Investigating the catalytic effect of Fe(NO3)3 on the performance of tungsten (W) chemical mechanical planarization in H2O2-based acidic slurries, we found that the trend of the polishing rate with increasing Fe(NO3)3 concentration was divided into two regions. The polishing rate in region I (&lt;0.10wt%) increased rapidly because of the increase of the WO3 layer formed by the reaction of Fe(NO3)3 and H2O2. The polishing rate in region II (&gt;0.10wt%), on the other hand, increased only slightly with increasing Fe(NO3)3 concentration. We suggest the excess ferric ions in the slurry were rapidly supplied to the W surface. Consequently, the addition of Fe(NO3)3 resulted in the rapid formation of the WO3 layer because of the decomposition of H2O2 into O2 by Fe3+ ion, and polishing rate increased with the Fe(NO3)3 concentration. This polishing trend was explained through the opposite trend of static etch rate, the confirmation of the surface morphology, the trend of the WO3 content on the W surface, and the trend of the corrosion potential and the corrosion current density.</description><subject>Catalyst</subject><subject>Chemical mechanical planarization</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Corrosion potential</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Current density</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Fe(NO3)3</subject><subject>Morphology</subject><subject>Oxidizer</subject><subject>Physics</subject><subject>Polishing</subject><subject>Slurries</subject><subject>Trends</subject><subject>Tungsten</subject><subject>Tungsten oxides</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJoZtt_kEPvhTSg13J-rIvhbDkYyHQS3MWsjRqtKwlV7ID7a-Ptl5yDAg0oGdm9D4IfSG4IZiI74dGT3nJpmkxoQ0WDcb0A9qQTtKa845doE3B-ppR2n5ClzkfMCZted0gc-scmLmKrvIphuv9fv-tCn5OeobKxGAgnGofQ1XOvITfeYZQmWcYvdHHegTzrMP_cjrqoJP_t9ITJBfTqMuEz-ij08cMV-d7i57ubn_tHurHn_f73c1jbRjlcz1g2ks7WNGxwVEmWW-4tUwM0mgmh5ZTSXrBetphy6gGCa0BMVDjOm6F5XSLrte5U4p_FsizGn02cCz_grhkRUTHpeC9lAVlK2pSzDmBU1Pyo05_FcHq5FQd1OpUnZwqLFRxWtq-njfoXCK7VOL5_NbbSkGl7FjhfqwclLgvHpLKxkNRYX0qtpWN_v1Fr7K8kEk</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Lim, Jae-Hyung</creator><creator>Park, Jin-Hyung</creator><creator>Park, Jea-Gun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance</title><author>Lim, Jae-Hyung ; Park, Jin-Hyung ; Park, Jea-Gun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-b0397dbd684bf34749c5dd46b7ca47b253719649380d43ae7e2ce6b3cf85d6d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalyst</topic><topic>Chemical mechanical planarization</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Corrosion potential</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Current density</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Fe(NO3)3</topic><topic>Morphology</topic><topic>Oxidizer</topic><topic>Physics</topic><topic>Polishing</topic><topic>Slurries</topic><topic>Trends</topic><topic>Tungsten</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jae-Hyung</creatorcontrib><creatorcontrib>Park, Jin-Hyung</creatorcontrib><creatorcontrib>Park, Jea-Gun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jae-Hyung</au><au>Park, Jin-Hyung</au><au>Park, Jea-Gun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance</atitle><jtitle>Applied surface science</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>282</volume><spage>512</spage><epage>517</epage><pages>512-517</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate.•The trends of the W oxide layer content and corrosion current density were similar to the trend of polishing rate. Investigating the catalytic effect of Fe(NO3)3 on the performance of tungsten (W) chemical mechanical planarization in H2O2-based acidic slurries, we found that the trend of the polishing rate with increasing Fe(NO3)3 concentration was divided into two regions. The polishing rate in region I (&lt;0.10wt%) increased rapidly because of the increase of the WO3 layer formed by the reaction of Fe(NO3)3 and H2O2. The polishing rate in region II (&gt;0.10wt%), on the other hand, increased only slightly with increasing Fe(NO3)3 concentration. We suggest the excess ferric ions in the slurry were rapidly supplied to the W surface. Consequently, the addition of Fe(NO3)3 resulted in the rapid formation of the WO3 layer because of the decomposition of H2O2 into O2 by Fe3+ ion, and polishing rate increased with the Fe(NO3)3 concentration. This polishing trend was explained through the opposite trend of static etch rate, the confirmation of the surface morphology, the trend of the WO3 content on the W surface, and the trend of the corrosion potential and the corrosion current density.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2013.06.003</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2013-10, Vol.282, p.512-517
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1685765977
source Elsevier ScienceDirect Journals
subjects Catalyst
Chemical mechanical planarization
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Corrosion potential
Cross-disciplinary physics: materials science
rheology
Current density
Etching
Exact sciences and technology
Fe(NO3)3
Morphology
Oxidizer
Physics
Polishing
Slurries
Trends
Tungsten
Tungsten oxides
title Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20iron(III)%20nitrate%20concentration%20on%20tungsten%20chemical-mechanical-planarization%20performance&rft.jtitle=Applied%20surface%20science&rft.au=Lim,%20Jae-Hyung&rft.date=2013-10-01&rft.volume=282&rft.spage=512&rft.epage=517&rft.pages=512-517&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2013.06.003&rft_dat=%3Cproquest_cross%3E1685765977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685765977&rft_id=info:pmid/&rft_els_id=S0169433213011021&rfr_iscdi=true