Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance
•We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2013-10, Vol.282, p.512-517 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | |
container_start_page | 512 |
container_title | Applied surface science |
container_volume | 282 |
creator | Lim, Jae-Hyung Park, Jin-Hyung Park, Jea-Gun |
description | •We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate.•The trends of the W oxide layer content and corrosion current density were similar to the trend of polishing rate.
Investigating the catalytic effect of Fe(NO3)3 on the performance of tungsten (W) chemical mechanical planarization in H2O2-based acidic slurries, we found that the trend of the polishing rate with increasing Fe(NO3)3 concentration was divided into two regions. The polishing rate in region I (0.10wt%), on the other hand, increased only slightly with increasing Fe(NO3)3 concentration. We suggest the excess ferric ions in the slurry were rapidly supplied to the W surface. Consequently, the addition of Fe(NO3)3 resulted in the rapid formation of the WO3 layer because of the decomposition of H2O2 into O2 by Fe3+ ion, and polishing rate increased with the Fe(NO3)3 concentration. This polishing trend was explained through the opposite trend of static etch rate, the confirmation of the surface morphology, the trend of the WO3 content on the W surface, and the trend of the corrosion potential and the corrosion current density. |
doi_str_mv | 10.1016/j.apsusc.2013.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685765977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433213011021</els_id><sourcerecordid>1685765977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-b0397dbd684bf34749c5dd46b7ca47b253719649380d43ae7e2ce6b3cf85d6d53</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoZtt_kEPvhTSg13J-rIvhbDkYyHQS3MWsjRqtKwlV7ID7a-Ptl5yDAg0oGdm9D4IfSG4IZiI74dGT3nJpmkxoQ0WDcb0A9qQTtKa845doE3B-ppR2n5ClzkfMCZted0gc-scmLmKrvIphuv9fv-tCn5OeobKxGAgnGofQ1XOvITfeYZQmWcYvdHHegTzrMP_cjrqoJP_t9ITJBfTqMuEz-ij08cMV-d7i57ubn_tHurHn_f73c1jbRjlcz1g2ks7WNGxwVEmWW-4tUwM0mgmh5ZTSXrBetphy6gGCa0BMVDjOm6F5XSLrte5U4p_FsizGn02cCz_grhkRUTHpeC9lAVlK2pSzDmBU1Pyo05_FcHq5FQd1OpUnZwqLFRxWtq-njfoXCK7VOL5_NbbSkGl7FjhfqwclLgvHpLKxkNRYX0qtpWN_v1Fr7K8kEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685765977</pqid></control><display><type>article</type><title>Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance</title><source>Elsevier ScienceDirect Journals</source><creator>Lim, Jae-Hyung ; Park, Jin-Hyung ; Park, Jea-Gun</creator><creatorcontrib>Lim, Jae-Hyung ; Park, Jin-Hyung ; Park, Jea-Gun</creatorcontrib><description>•We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate.•The trends of the W oxide layer content and corrosion current density were similar to the trend of polishing rate.
Investigating the catalytic effect of Fe(NO3)3 on the performance of tungsten (W) chemical mechanical planarization in H2O2-based acidic slurries, we found that the trend of the polishing rate with increasing Fe(NO3)3 concentration was divided into two regions. The polishing rate in region I (<0.10wt%) increased rapidly because of the increase of the WO3 layer formed by the reaction of Fe(NO3)3 and H2O2. The polishing rate in region II (>0.10wt%), on the other hand, increased only slightly with increasing Fe(NO3)3 concentration. We suggest the excess ferric ions in the slurry were rapidly supplied to the W surface. Consequently, the addition of Fe(NO3)3 resulted in the rapid formation of the WO3 layer because of the decomposition of H2O2 into O2 by Fe3+ ion, and polishing rate increased with the Fe(NO3)3 concentration. This polishing trend was explained through the opposite trend of static etch rate, the confirmation of the surface morphology, the trend of the WO3 content on the W surface, and the trend of the corrosion potential and the corrosion current density.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2013.06.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalyst ; Chemical mechanical planarization ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Corrosion potential ; Cross-disciplinary physics: materials science; rheology ; Current density ; Etching ; Exact sciences and technology ; Fe(NO3)3 ; Morphology ; Oxidizer ; Physics ; Polishing ; Slurries ; Trends ; Tungsten ; Tungsten oxides</subject><ispartof>Applied surface science, 2013-10, Vol.282, p.512-517</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-b0397dbd684bf34749c5dd46b7ca47b253719649380d43ae7e2ce6b3cf85d6d53</citedby><cites>FETCH-LOGICAL-c435t-b0397dbd684bf34749c5dd46b7ca47b253719649380d43ae7e2ce6b3cf85d6d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2013.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27637784$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Jae-Hyung</creatorcontrib><creatorcontrib>Park, Jin-Hyung</creatorcontrib><creatorcontrib>Park, Jea-Gun</creatorcontrib><title>Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance</title><title>Applied surface science</title><description>•We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate.•The trends of the W oxide layer content and corrosion current density were similar to the trend of polishing rate.
Investigating the catalytic effect of Fe(NO3)3 on the performance of tungsten (W) chemical mechanical planarization in H2O2-based acidic slurries, we found that the trend of the polishing rate with increasing Fe(NO3)3 concentration was divided into two regions. The polishing rate in region I (<0.10wt%) increased rapidly because of the increase of the WO3 layer formed by the reaction of Fe(NO3)3 and H2O2. The polishing rate in region II (>0.10wt%), on the other hand, increased only slightly with increasing Fe(NO3)3 concentration. We suggest the excess ferric ions in the slurry were rapidly supplied to the W surface. Consequently, the addition of Fe(NO3)3 resulted in the rapid formation of the WO3 layer because of the decomposition of H2O2 into O2 by Fe3+ ion, and polishing rate increased with the Fe(NO3)3 concentration. This polishing trend was explained through the opposite trend of static etch rate, the confirmation of the surface morphology, the trend of the WO3 content on the W surface, and the trend of the corrosion potential and the corrosion current density.</description><subject>Catalyst</subject><subject>Chemical mechanical planarization</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Corrosion potential</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Current density</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Fe(NO3)3</subject><subject>Morphology</subject><subject>Oxidizer</subject><subject>Physics</subject><subject>Polishing</subject><subject>Slurries</subject><subject>Trends</subject><subject>Tungsten</subject><subject>Tungsten oxides</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJoZtt_kEPvhTSg13J-rIvhbDkYyHQS3MWsjRqtKwlV7ID7a-Ptl5yDAg0oGdm9D4IfSG4IZiI74dGT3nJpmkxoQ0WDcb0A9qQTtKa845doE3B-ppR2n5ClzkfMCZted0gc-scmLmKrvIphuv9fv-tCn5OeobKxGAgnGofQ1XOvITfeYZQmWcYvdHHegTzrMP_cjrqoJP_t9ITJBfTqMuEz-ij08cMV-d7i57ubn_tHurHn_f73c1jbRjlcz1g2ks7WNGxwVEmWW-4tUwM0mgmh5ZTSXrBetphy6gGCa0BMVDjOm6F5XSLrte5U4p_FsizGn02cCz_grhkRUTHpeC9lAVlK2pSzDmBU1Pyo05_FcHq5FQd1OpUnZwqLFRxWtq-njfoXCK7VOL5_NbbSkGl7FjhfqwclLgvHpLKxkNRYX0qtpWN_v1Fr7K8kEk</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Lim, Jae-Hyung</creator><creator>Park, Jin-Hyung</creator><creator>Park, Jea-Gun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance</title><author>Lim, Jae-Hyung ; Park, Jin-Hyung ; Park, Jea-Gun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-b0397dbd684bf34749c5dd46b7ca47b253719649380d43ae7e2ce6b3cf85d6d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalyst</topic><topic>Chemical mechanical planarization</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Corrosion potential</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Current density</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Fe(NO3)3</topic><topic>Morphology</topic><topic>Oxidizer</topic><topic>Physics</topic><topic>Polishing</topic><topic>Slurries</topic><topic>Trends</topic><topic>Tungsten</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Jae-Hyung</creatorcontrib><creatorcontrib>Park, Jin-Hyung</creatorcontrib><creatorcontrib>Park, Jea-Gun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Jae-Hyung</au><au>Park, Jin-Hyung</au><au>Park, Jea-Gun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance</atitle><jtitle>Applied surface science</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>282</volume><spage>512</spage><epage>517</epage><pages>512-517</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•We analyzed the W polishing mechanism on the Fe(NO3)3 concentration in H2O2 based acidic slurry.•The trend of the polishing rate was divided into two regions as a function of the Fe(NO3)3 concentration in H2O2 based slurry.•The trend of static etch rate is the opposite of that of the polishing rate.•The trends of the W oxide layer content and corrosion current density were similar to the trend of polishing rate.
Investigating the catalytic effect of Fe(NO3)3 on the performance of tungsten (W) chemical mechanical planarization in H2O2-based acidic slurries, we found that the trend of the polishing rate with increasing Fe(NO3)3 concentration was divided into two regions. The polishing rate in region I (<0.10wt%) increased rapidly because of the increase of the WO3 layer formed by the reaction of Fe(NO3)3 and H2O2. The polishing rate in region II (>0.10wt%), on the other hand, increased only slightly with increasing Fe(NO3)3 concentration. We suggest the excess ferric ions in the slurry were rapidly supplied to the W surface. Consequently, the addition of Fe(NO3)3 resulted in the rapid formation of the WO3 layer because of the decomposition of H2O2 into O2 by Fe3+ ion, and polishing rate increased with the Fe(NO3)3 concentration. This polishing trend was explained through the opposite trend of static etch rate, the confirmation of the surface morphology, the trend of the WO3 content on the W surface, and the trend of the corrosion potential and the corrosion current density.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2013.06.003</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2013-10, Vol.282, p.512-517 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685765977 |
source | Elsevier ScienceDirect Journals |
subjects | Catalyst Chemical mechanical planarization Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Corrosion potential Cross-disciplinary physics: materials science rheology Current density Etching Exact sciences and technology Fe(NO3)3 Morphology Oxidizer Physics Polishing Slurries Trends Tungsten Tungsten oxides |
title | Effect of iron(III) nitrate concentration on tungsten chemical-mechanical-planarization performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20iron(III)%20nitrate%20concentration%20on%20tungsten%20chemical-mechanical-planarization%20performance&rft.jtitle=Applied%20surface%20science&rft.au=Lim,%20Jae-Hyung&rft.date=2013-10-01&rft.volume=282&rft.spage=512&rft.epage=517&rft.pages=512-517&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2013.06.003&rft_dat=%3Cproquest_cross%3E1685765977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685765977&rft_id=info:pmid/&rft_els_id=S0169433213011021&rfr_iscdi=true |