Deep-UV microsphere projection lithography
In this Letter, we present a single-exposure deep-UV projection lithography at 254-nm wavelength that produces nanopatterns in a scalable area with a feature size of 80 nm. In this method, a macroscopic lens projects a pixelated optical mask on a monolayer of hexagonally arranged microspheres that r...
Gespeichert in:
Veröffentlicht in: | Optics letters 2015-06, Vol.40 (11), p.2537-2540 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2540 |
---|---|
container_issue | 11 |
container_start_page | 2537 |
container_title | Optics letters |
container_volume | 40 |
creator | Bonakdar, Alireza Rezaei, Mohsen Brown, Robert L Fathipour, Vala Dexheimer, Eric Jang, Sung Jun Mohseni, Hooman |
description | In this Letter, we present a single-exposure deep-UV projection lithography at 254-nm wavelength that produces nanopatterns in a scalable area with a feature size of 80 nm. In this method, a macroscopic lens projects a pixelated optical mask on a monolayer of hexagonally arranged microspheres that reside on the Fourier plane and image the mask's pattern into a photoresist film. Our macroscopic lens shrinks the size of the mask by providing an imaging magnification of ∼1.86×10(4), while enhancing the exposure power. On the other hand, microsphere lens produces a sub-diffraction limit focal point-a so-called photonic nanojet-based on the near-surface focusing effect, which ensures an excellent patterning accuracy against the presence of surface roughness. Ray-optics simulation is utilized to design the bulk optics part of the lithography system, while a wave-optics simulation is implemented to simulate the optical properties of the exposed regions beneath the microspheres. We characterize the lithography performance in terms of the proximity effect, lens aberration, and interference effect due to refractive index mismatch between photoresist and substrate. |
doi_str_mv | 10.1364/OL.40.002537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685751476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685751476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f38c5dcfa8a31950a1a0ff64828b43471f1e9fd45ef8fa7d5a0669d074bf56a83</originalsourceid><addsrcrecordid>eNo9kDtPwzAURi0EoqWwMaOOCJFyHb9H1PKSImWhrJabXNNUSRPsdOi_J1UL07ccfTo6hNxSmFEm-VOezTjMAFLB1BkZU8FMwpXh52QMlMvECJOOyFWMGwCQirFLMkolMBCCjsnDArFLll_TpipCG7s1Bpx2od1g0VftdlpX_br9Dq5b76_JhXd1xJvTTsjy9eVz_p5k-dvH_DlLCsZ4n3imC1EW3mnHqBHgqAPvJdepXnHGFfUUjS-5QK-9U6VwIKUpQfGVF9JpNiH3x99B42eHsbdNFQusa7fFdhctlVooQbmSA_p4RA_uMaC3XagaF_aWgj3UsXlmOdhjnQG_Oz3vVg2W__BfDvYLNlJeeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685751476</pqid></control><display><type>article</type><title>Deep-UV microsphere projection lithography</title><source>Optica Publishing Group Journals</source><creator>Bonakdar, Alireza ; Rezaei, Mohsen ; Brown, Robert L ; Fathipour, Vala ; Dexheimer, Eric ; Jang, Sung Jun ; Mohseni, Hooman</creator><creatorcontrib>Bonakdar, Alireza ; Rezaei, Mohsen ; Brown, Robert L ; Fathipour, Vala ; Dexheimer, Eric ; Jang, Sung Jun ; Mohseni, Hooman</creatorcontrib><description>In this Letter, we present a single-exposure deep-UV projection lithography at 254-nm wavelength that produces nanopatterns in a scalable area with a feature size of 80 nm. In this method, a macroscopic lens projects a pixelated optical mask on a monolayer of hexagonally arranged microspheres that reside on the Fourier plane and image the mask's pattern into a photoresist film. Our macroscopic lens shrinks the size of the mask by providing an imaging magnification of ∼1.86×10(4), while enhancing the exposure power. On the other hand, microsphere lens produces a sub-diffraction limit focal point-a so-called photonic nanojet-based on the near-surface focusing effect, which ensures an excellent patterning accuracy against the presence of surface roughness. Ray-optics simulation is utilized to design the bulk optics part of the lithography system, while a wave-optics simulation is implemented to simulate the optical properties of the exposed regions beneath the microspheres. We characterize the lithography performance in terms of the proximity effect, lens aberration, and interference effect due to refractive index mismatch between photoresist and substrate.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.40.002537</identifier><identifier>PMID: 26030551</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics letters, 2015-06, Vol.40 (11), p.2537-2540</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f38c5dcfa8a31950a1a0ff64828b43471f1e9fd45ef8fa7d5a0669d074bf56a83</citedby><cites>FETCH-LOGICAL-c334t-f38c5dcfa8a31950a1a0ff64828b43471f1e9fd45ef8fa7d5a0669d074bf56a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26030551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonakdar, Alireza</creatorcontrib><creatorcontrib>Rezaei, Mohsen</creatorcontrib><creatorcontrib>Brown, Robert L</creatorcontrib><creatorcontrib>Fathipour, Vala</creatorcontrib><creatorcontrib>Dexheimer, Eric</creatorcontrib><creatorcontrib>Jang, Sung Jun</creatorcontrib><creatorcontrib>Mohseni, Hooman</creatorcontrib><title>Deep-UV microsphere projection lithography</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>In this Letter, we present a single-exposure deep-UV projection lithography at 254-nm wavelength that produces nanopatterns in a scalable area with a feature size of 80 nm. In this method, a macroscopic lens projects a pixelated optical mask on a monolayer of hexagonally arranged microspheres that reside on the Fourier plane and image the mask's pattern into a photoresist film. Our macroscopic lens shrinks the size of the mask by providing an imaging magnification of ∼1.86×10(4), while enhancing the exposure power. On the other hand, microsphere lens produces a sub-diffraction limit focal point-a so-called photonic nanojet-based on the near-surface focusing effect, which ensures an excellent patterning accuracy against the presence of surface roughness. Ray-optics simulation is utilized to design the bulk optics part of the lithography system, while a wave-optics simulation is implemented to simulate the optical properties of the exposed regions beneath the microspheres. We characterize the lithography performance in terms of the proximity effect, lens aberration, and interference effect due to refractive index mismatch between photoresist and substrate.</description><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAURi0EoqWwMaOOCJFyHb9H1PKSImWhrJabXNNUSRPsdOi_J1UL07ccfTo6hNxSmFEm-VOezTjMAFLB1BkZU8FMwpXh52QMlMvECJOOyFWMGwCQirFLMkolMBCCjsnDArFLll_TpipCG7s1Bpx2od1g0VftdlpX_br9Dq5b76_JhXd1xJvTTsjy9eVz_p5k-dvH_DlLCsZ4n3imC1EW3mnHqBHgqAPvJdepXnHGFfUUjS-5QK-9U6VwIKUpQfGVF9JpNiH3x99B42eHsbdNFQusa7fFdhctlVooQbmSA_p4RA_uMaC3XagaF_aWgj3UsXlmOdhjnQG_Oz3vVg2W__BfDvYLNlJeeA</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Bonakdar, Alireza</creator><creator>Rezaei, Mohsen</creator><creator>Brown, Robert L</creator><creator>Fathipour, Vala</creator><creator>Dexheimer, Eric</creator><creator>Jang, Sung Jun</creator><creator>Mohseni, Hooman</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Deep-UV microsphere projection lithography</title><author>Bonakdar, Alireza ; Rezaei, Mohsen ; Brown, Robert L ; Fathipour, Vala ; Dexheimer, Eric ; Jang, Sung Jun ; Mohseni, Hooman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f38c5dcfa8a31950a1a0ff64828b43471f1e9fd45ef8fa7d5a0669d074bf56a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonakdar, Alireza</creatorcontrib><creatorcontrib>Rezaei, Mohsen</creatorcontrib><creatorcontrib>Brown, Robert L</creatorcontrib><creatorcontrib>Fathipour, Vala</creatorcontrib><creatorcontrib>Dexheimer, Eric</creatorcontrib><creatorcontrib>Jang, Sung Jun</creatorcontrib><creatorcontrib>Mohseni, Hooman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonakdar, Alireza</au><au>Rezaei, Mohsen</au><au>Brown, Robert L</au><au>Fathipour, Vala</au><au>Dexheimer, Eric</au><au>Jang, Sung Jun</au><au>Mohseni, Hooman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-UV microsphere projection lithography</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>40</volume><issue>11</issue><spage>2537</spage><epage>2540</epage><pages>2537-2540</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>In this Letter, we present a single-exposure deep-UV projection lithography at 254-nm wavelength that produces nanopatterns in a scalable area with a feature size of 80 nm. In this method, a macroscopic lens projects a pixelated optical mask on a monolayer of hexagonally arranged microspheres that reside on the Fourier plane and image the mask's pattern into a photoresist film. Our macroscopic lens shrinks the size of the mask by providing an imaging magnification of ∼1.86×10(4), while enhancing the exposure power. On the other hand, microsphere lens produces a sub-diffraction limit focal point-a so-called photonic nanojet-based on the near-surface focusing effect, which ensures an excellent patterning accuracy against the presence of surface roughness. Ray-optics simulation is utilized to design the bulk optics part of the lithography system, while a wave-optics simulation is implemented to simulate the optical properties of the exposed regions beneath the microspheres. We characterize the lithography performance in terms of the proximity effect, lens aberration, and interference effect due to refractive index mismatch between photoresist and substrate.</abstract><cop>United States</cop><pmid>26030551</pmid><doi>10.1364/OL.40.002537</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2015-06, Vol.40 (11), p.2537-2540 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685751476 |
source | Optica Publishing Group Journals |
title | Deep-UV microsphere projection lithography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-UV%20microsphere%20projection%20lithography&rft.jtitle=Optics%20letters&rft.au=Bonakdar,%20Alireza&rft.date=2015-06-01&rft.volume=40&rft.issue=11&rft.spage=2537&rft.epage=2540&rft.pages=2537-2540&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.40.002537&rft_dat=%3Cproquest_cross%3E1685751476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685751476&rft_id=info:pmid/26030551&rfr_iscdi=true |