Dynamics of a relativistic charge in the Penning trap

We are interested in the motion of a classical charge within a processing chamber of a Penning trap. We examine the relativistic Lagrangian and Hamiltonian dynamics without any approximations. We show that the radial and axial motions are non-linearly coupled to each other whenever the special relat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2015-05, Vol.25 (5), p.053102-053102
Hauptverfasser: Yaremko, Yurij, Przybylska, Maria, Maciejewski, Andrzej J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 053102
container_issue 5
container_start_page 053102
container_title Chaos (Woodbury, N.Y.)
container_volume 25
creator Yaremko, Yurij
Przybylska, Maria
Maciejewski, Andrzej J
description We are interested in the motion of a classical charge within a processing chamber of a Penning trap. We examine the relativistic Lagrangian and Hamiltonian dynamics without any approximations. We show that the radial and axial motions are non-linearly coupled to each other whenever the special relativity is taken into account. As the restoring quadruple potential has the axial symmetry, the dynamics of the system can be reduced to two degrees of freedom. If all the energy of a charge belongs to the axial oscillating mode, its time evolution is described by the nonlinear equation of motion for a simple pendulum. If the whole energy is accumulated in radial oscillating mode, the dynamical system resembles a double pendulum. We demonstrate that the Hamiltonian system is not integrable in the Liouville sense in the class of functions meromorphic in coordinates and momenta. Using Poincaré sections, we show that, in spite of the non-integrability, a large part of the phase space is filled by quasi-periodic solutions that encircle some periodic solutions. We determine numerically characteristic frequencies of these periodic solutions.
doi_str_mv 10.1063/1.4919243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685749220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685749220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-de219241e54db5f71815d9dabc073eaa3406e7f9da7eaa56b5940726fde32e8c3</originalsourceid><addsrcrecordid>eNpdkMtKw0AUhgdRbK0ufAEZcKOL1DlzTZZSr1DQha6HyeSkTUmTOpMIfXtTWl24Ohc-fn4-Qi6BTYFpcQdTmUHGpTgiY2Bplhid8uPdrmQCirEROYtxxRgDLtQpGXHNuBYgx0Q9bBu3rnykbUkdDVi7rvquYld56pcuLJBWDe2WSN-xaapmQbvgNufkpHR1xIvDnJDPp8eP2Usyf3t-nd3PEy9AdEmBfFcLUMkiV6WBFFSRFS73zAh0Tkim0ZTDxwyX0rnKJDNclwUKjqkXE3Kzz92E9qvH2Nl1FT3WtWuw7aMFnSojM87ZgF7_Q1dtH5qhneXApdESUjVQt3vKhzbGgKXdhGrtwtYCszuXFuzB5cBeHRL7fI3FH_krT_wAb_drwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124764185</pqid></control><display><type>article</type><title>Dynamics of a relativistic charge in the Penning trap</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yaremko, Yurij ; Przybylska, Maria ; Maciejewski, Andrzej J</creator><creatorcontrib>Yaremko, Yurij ; Przybylska, Maria ; Maciejewski, Andrzej J</creatorcontrib><description>We are interested in the motion of a classical charge within a processing chamber of a Penning trap. We examine the relativistic Lagrangian and Hamiltonian dynamics without any approximations. We show that the radial and axial motions are non-linearly coupled to each other whenever the special relativity is taken into account. As the restoring quadruple potential has the axial symmetry, the dynamics of the system can be reduced to two degrees of freedom. If all the energy of a charge belongs to the axial oscillating mode, its time evolution is described by the nonlinear equation of motion for a simple pendulum. If the whole energy is accumulated in radial oscillating mode, the dynamical system resembles a double pendulum. We demonstrate that the Hamiltonian system is not integrable in the Liouville sense in the class of functions meromorphic in coordinates and momenta. Using Poincaré sections, we show that, in spite of the non-integrability, a large part of the phase space is filled by quasi-periodic solutions that encircle some periodic solutions. We determine numerically characteristic frequencies of these periodic solutions.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4919243</identifier><identifier>PMID: 26026314</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Equations of motion ; Hamiltonian functions ; Nonlinear equations ; Relativism ; Relativistic effects ; Relativity</subject><ispartof>Chaos (Woodbury, N.Y.), 2015-05, Vol.25 (5), p.053102-053102</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-de219241e54db5f71815d9dabc073eaa3406e7f9da7eaa56b5940726fde32e8c3</citedby><cites>FETCH-LOGICAL-c313t-de219241e54db5f71815d9dabc073eaa3406e7f9da7eaa56b5940726fde32e8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26026314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaremko, Yurij</creatorcontrib><creatorcontrib>Przybylska, Maria</creatorcontrib><creatorcontrib>Maciejewski, Andrzej J</creatorcontrib><title>Dynamics of a relativistic charge in the Penning trap</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We are interested in the motion of a classical charge within a processing chamber of a Penning trap. We examine the relativistic Lagrangian and Hamiltonian dynamics without any approximations. We show that the radial and axial motions are non-linearly coupled to each other whenever the special relativity is taken into account. As the restoring quadruple potential has the axial symmetry, the dynamics of the system can be reduced to two degrees of freedom. If all the energy of a charge belongs to the axial oscillating mode, its time evolution is described by the nonlinear equation of motion for a simple pendulum. If the whole energy is accumulated in radial oscillating mode, the dynamical system resembles a double pendulum. We demonstrate that the Hamiltonian system is not integrable in the Liouville sense in the class of functions meromorphic in coordinates and momenta. Using Poincaré sections, we show that, in spite of the non-integrability, a large part of the phase space is filled by quasi-periodic solutions that encircle some periodic solutions. We determine numerically characteristic frequencies of these periodic solutions.</description><subject>Equations of motion</subject><subject>Hamiltonian functions</subject><subject>Nonlinear equations</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativity</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKw0AUhgdRbK0ufAEZcKOL1DlzTZZSr1DQha6HyeSkTUmTOpMIfXtTWl24Ohc-fn4-Qi6BTYFpcQdTmUHGpTgiY2Bplhid8uPdrmQCirEROYtxxRgDLtQpGXHNuBYgx0Q9bBu3rnykbUkdDVi7rvquYld56pcuLJBWDe2WSN-xaapmQbvgNufkpHR1xIvDnJDPp8eP2Usyf3t-nd3PEy9AdEmBfFcLUMkiV6WBFFSRFS73zAh0Tkim0ZTDxwyX0rnKJDNclwUKjqkXE3Kzz92E9qvH2Nl1FT3WtWuw7aMFnSojM87ZgF7_Q1dtH5qhneXApdESUjVQt3vKhzbGgKXdhGrtwtYCszuXFuzB5cBeHRL7fI3FH_krT_wAb_drwg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Yaremko, Yurij</creator><creator>Przybylska, Maria</creator><creator>Maciejewski, Andrzej J</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>Dynamics of a relativistic charge in the Penning trap</title><author>Yaremko, Yurij ; Przybylska, Maria ; Maciejewski, Andrzej J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-de219241e54db5f71815d9dabc073eaa3406e7f9da7eaa56b5940726fde32e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Equations of motion</topic><topic>Hamiltonian functions</topic><topic>Nonlinear equations</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaremko, Yurij</creatorcontrib><creatorcontrib>Przybylska, Maria</creatorcontrib><creatorcontrib>Maciejewski, Andrzej J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaremko, Yurij</au><au>Przybylska, Maria</au><au>Maciejewski, Andrzej J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of a relativistic charge in the Penning trap</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>25</volume><issue>5</issue><spage>053102</spage><epage>053102</epage><pages>053102-053102</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><abstract>We are interested in the motion of a classical charge within a processing chamber of a Penning trap. We examine the relativistic Lagrangian and Hamiltonian dynamics without any approximations. We show that the radial and axial motions are non-linearly coupled to each other whenever the special relativity is taken into account. As the restoring quadruple potential has the axial symmetry, the dynamics of the system can be reduced to two degrees of freedom. If all the energy of a charge belongs to the axial oscillating mode, its time evolution is described by the nonlinear equation of motion for a simple pendulum. If the whole energy is accumulated in radial oscillating mode, the dynamical system resembles a double pendulum. We demonstrate that the Hamiltonian system is not integrable in the Liouville sense in the class of functions meromorphic in coordinates and momenta. Using Poincaré sections, we show that, in spite of the non-integrability, a large part of the phase space is filled by quasi-periodic solutions that encircle some periodic solutions. We determine numerically characteristic frequencies of these periodic solutions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26026314</pmid><doi>10.1063/1.4919243</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2015-05, Vol.25 (5), p.053102-053102
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_1685749220
source AIP Journals Complete; Alma/SFX Local Collection
subjects Equations of motion
Hamiltonian functions
Nonlinear equations
Relativism
Relativistic effects
Relativity
title Dynamics of a relativistic charge in the Penning trap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20a%20relativistic%20charge%20in%20the%20Penning%20trap&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Yaremko,%20Yurij&rft.date=2015-05-01&rft.volume=25&rft.issue=5&rft.spage=053102&rft.epage=053102&rft.pages=053102-053102&rft.issn=1054-1500&rft.eissn=1089-7682&rft_id=info:doi/10.1063/1.4919243&rft_dat=%3Cproquest_cross%3E1685749220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124764185&rft_id=info:pmid/26026314&rfr_iscdi=true