In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models
Purpose Predicting human skin permeability of chemical compounds accurately and efficiently is useful for developing dermatological medicines and cosmetics. However, previous work have two problems; 1) quality of databases used, and 2) methods for prediction models. In this paper, we attempt to solv...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical research 2015-07, Vol.32 (7), p.2360-2371 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2371 |
---|---|
container_issue | 7 |
container_start_page | 2360 |
container_title | Pharmaceutical research |
container_volume | 32 |
creator | Baba, Hiromi Takahara, Jun-ichi Mamitsuka, Hiroshi |
description | Purpose
Predicting human skin permeability of chemical compounds accurately and efficiently is useful for developing dermatological medicines and cosmetics. However, previous work have two problems; 1) quality of databases used, and 2) methods for prediction models. In this paper, we attempt to solve these two problems.
Methods
We first compile, by carefully screening from the literature, a novel dataset of chemical compounds with permeability coefficients, measured under consistent experimental conditions. We then apply machine learning techniques such as support vector regression (SVR) and random forest (RF) to our database to develop prediction models. Molecular descriptors are fully computationally obtained, and greedy stepwise selection is employed for descriptor selection. Prediction models are internally and externally validated.
Results
We generated an original, new database on human skin permeability of 211 different compounds from aqueous donors. Nonlinear SVR achieved the best performance among linear SVR, nonlinear SVR, and RF. The determination coefficient, root mean square error, and mean absolute error of nonlinear SVR in external validation were 0.910, 0.342, and 0.282, respectively.
Conclusions
We provided one of the largest datasets with purely experimental log
k
p
and developed reliable and accurate prediction models for screening active ingredients and seeking unsynthesized compounds of dermatological medicines and cosmetics. |
doi_str_mv | 10.1007/s11095-015-1629-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1684436453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1684436453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-1d5f7cd64cf92d4511a5a01a3bda20d14ad35554c6b445a375cc821f36aa11613</originalsourceid><addsrcrecordid>eNp1kctuFDEQRa0IlAwhH5ANssSGTYOr_ejuJYqARAowISBlZ3lsd3Dotgc_Is2Of-AP-RI8TIIiJFZe1Lm3rDoIHQN5CYR0rxIAGXhDgDcg2qHZ7KEF8I42A2FXj9CCdC1r-o7BAXqS0g0hpIeB7aODlgsQnJEFuj3z-NJNTge8jNY4nV3wCYcRn5ZZ1dk35_HSxtmqVcXyBpfk_DX-EPzkvFURXxTls8squ1uLL3MsOpdof_34uYxhbWNNfLKT-lP71a3x-2DslJ6ix6Oakj26ew_Rl7dvPp-cNucf352dvD5vNCd9bsDwsdNGMD0OrWEcQHFFQNGVUS0xwJShnHOmxYoxrmjHte5bGKlQCkAAPUQvdr3rGL4Xm7KcXdJ2mpS3oSQJomeMCsZpRZ__g96EEn393Zai9ZT1kJWCHaVjSCnaUa6jm1XcSCByK0XupMgqRW6lyE3NPLtrLqvZmr-JewsVaHdAqiN_beOD1f9t_Q0Rs5o4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683724741</pqid></control><display><type>article</type><title>In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Baba, Hiromi ; Takahara, Jun-ichi ; Mamitsuka, Hiroshi</creator><creatorcontrib>Baba, Hiromi ; Takahara, Jun-ichi ; Mamitsuka, Hiroshi</creatorcontrib><description>Purpose
Predicting human skin permeability of chemical compounds accurately and efficiently is useful for developing dermatological medicines and cosmetics. However, previous work have two problems; 1) quality of databases used, and 2) methods for prediction models. In this paper, we attempt to solve these two problems.
Methods
We first compile, by carefully screening from the literature, a novel dataset of chemical compounds with permeability coefficients, measured under consistent experimental conditions. We then apply machine learning techniques such as support vector regression (SVR) and random forest (RF) to our database to develop prediction models. Molecular descriptors are fully computationally obtained, and greedy stepwise selection is employed for descriptor selection. Prediction models are internally and externally validated.
Results
We generated an original, new database on human skin permeability of 211 different compounds from aqueous donors. Nonlinear SVR achieved the best performance among linear SVR, nonlinear SVR, and RF. The determination coefficient, root mean square error, and mean absolute error of nonlinear SVR in external validation were 0.910, 0.342, and 0.282, respectively.
Conclusions
We provided one of the largest datasets with purely experimental log
k
p
and developed reliable and accurate prediction models for screening active ingredients and seeking unsynthesized compounds of dermatological medicines and cosmetics.</description><identifier>ISSN: 0724-8741</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1007/s11095-015-1629-y</identifier><identifier>PMID: 25616540</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Administration, Cutaneous ; Algorithms ; Biochemistry ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Databases, Factual ; Dermatologic Agents - administration & dosage ; Dermatologic Agents - chemistry ; Dermatologic Agents - pharmacokinetics ; Humans ; Linear Models ; Medical Law ; Models, Biological ; Permeability ; Pharmaceutical sciences ; Pharmacology/Toxicology ; Pharmacy ; Quantitative Structure-Activity Relationship ; Research Paper ; Skin ; Skin - metabolism ; Skin Absorption - drug effects ; Support Vector Machine</subject><ispartof>Pharmaceutical research, 2015-07, Vol.32 (7), p.2360-2371</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-1d5f7cd64cf92d4511a5a01a3bda20d14ad35554c6b445a375cc821f36aa11613</citedby><cites>FETCH-LOGICAL-c508t-1d5f7cd64cf92d4511a5a01a3bda20d14ad35554c6b445a375cc821f36aa11613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11095-015-1629-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11095-015-1629-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25616540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baba, Hiromi</creatorcontrib><creatorcontrib>Takahara, Jun-ichi</creatorcontrib><creatorcontrib>Mamitsuka, Hiroshi</creatorcontrib><title>In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><addtitle>Pharm Res</addtitle><description>Purpose
Predicting human skin permeability of chemical compounds accurately and efficiently is useful for developing dermatological medicines and cosmetics. However, previous work have two problems; 1) quality of databases used, and 2) methods for prediction models. In this paper, we attempt to solve these two problems.
Methods
We first compile, by carefully screening from the literature, a novel dataset of chemical compounds with permeability coefficients, measured under consistent experimental conditions. We then apply machine learning techniques such as support vector regression (SVR) and random forest (RF) to our database to develop prediction models. Molecular descriptors are fully computationally obtained, and greedy stepwise selection is employed for descriptor selection. Prediction models are internally and externally validated.
Results
We generated an original, new database on human skin permeability of 211 different compounds from aqueous donors. Nonlinear SVR achieved the best performance among linear SVR, nonlinear SVR, and RF. The determination coefficient, root mean square error, and mean absolute error of nonlinear SVR in external validation were 0.910, 0.342, and 0.282, respectively.
Conclusions
We provided one of the largest datasets with purely experimental log
k
p
and developed reliable and accurate prediction models for screening active ingredients and seeking unsynthesized compounds of dermatological medicines and cosmetics.</description><subject>Administration, Cutaneous</subject><subject>Algorithms</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Databases, Factual</subject><subject>Dermatologic Agents - administration & dosage</subject><subject>Dermatologic Agents - chemistry</subject><subject>Dermatologic Agents - pharmacokinetics</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Medical Law</subject><subject>Models, Biological</subject><subject>Permeability</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Research Paper</subject><subject>Skin</subject><subject>Skin - metabolism</subject><subject>Skin Absorption - drug effects</subject><subject>Support Vector Machine</subject><issn>0724-8741</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kctuFDEQRa0IlAwhH5ANssSGTYOr_ejuJYqARAowISBlZ3lsd3Dotgc_Is2Of-AP-RI8TIIiJFZe1Lm3rDoIHQN5CYR0rxIAGXhDgDcg2qHZ7KEF8I42A2FXj9CCdC1r-o7BAXqS0g0hpIeB7aODlgsQnJEFuj3z-NJNTge8jNY4nV3wCYcRn5ZZ1dk35_HSxtmqVcXyBpfk_DX-EPzkvFURXxTls8squ1uLL3MsOpdof_34uYxhbWNNfLKT-lP71a3x-2DslJ6ix6Oakj26ew_Rl7dvPp-cNucf352dvD5vNCd9bsDwsdNGMD0OrWEcQHFFQNGVUS0xwJShnHOmxYoxrmjHte5bGKlQCkAAPUQvdr3rGL4Xm7KcXdJ2mpS3oSQJomeMCsZpRZ__g96EEn393Zai9ZT1kJWCHaVjSCnaUa6jm1XcSCByK0XupMgqRW6lyE3NPLtrLqvZmr-JewsVaHdAqiN_beOD1f9t_Q0Rs5o4</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Baba, Hiromi</creator><creator>Takahara, Jun-ichi</creator><creator>Mamitsuka, Hiroshi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models</title><author>Baba, Hiromi ; Takahara, Jun-ichi ; Mamitsuka, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-1d5f7cd64cf92d4511a5a01a3bda20d14ad35554c6b445a375cc821f36aa11613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Administration, Cutaneous</topic><topic>Algorithms</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Databases, Factual</topic><topic>Dermatologic Agents - administration & dosage</topic><topic>Dermatologic Agents - chemistry</topic><topic>Dermatologic Agents - pharmacokinetics</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Medical Law</topic><topic>Models, Biological</topic><topic>Permeability</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Research Paper</topic><topic>Skin</topic><topic>Skin - metabolism</topic><topic>Skin Absorption - drug effects</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baba, Hiromi</creatorcontrib><creatorcontrib>Takahara, Jun-ichi</creatorcontrib><creatorcontrib>Mamitsuka, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baba, Hiromi</au><au>Takahara, Jun-ichi</au><au>Mamitsuka, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models</atitle><jtitle>Pharmaceutical research</jtitle><stitle>Pharm Res</stitle><addtitle>Pharm Res</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>32</volume><issue>7</issue><spage>2360</spage><epage>2371</epage><pages>2360-2371</pages><issn>0724-8741</issn><eissn>1573-904X</eissn><abstract>Purpose
Predicting human skin permeability of chemical compounds accurately and efficiently is useful for developing dermatological medicines and cosmetics. However, previous work have two problems; 1) quality of databases used, and 2) methods for prediction models. In this paper, we attempt to solve these two problems.
Methods
We first compile, by carefully screening from the literature, a novel dataset of chemical compounds with permeability coefficients, measured under consistent experimental conditions. We then apply machine learning techniques such as support vector regression (SVR) and random forest (RF) to our database to develop prediction models. Molecular descriptors are fully computationally obtained, and greedy stepwise selection is employed for descriptor selection. Prediction models are internally and externally validated.
Results
We generated an original, new database on human skin permeability of 211 different compounds from aqueous donors. Nonlinear SVR achieved the best performance among linear SVR, nonlinear SVR, and RF. The determination coefficient, root mean square error, and mean absolute error of nonlinear SVR in external validation were 0.910, 0.342, and 0.282, respectively.
Conclusions
We provided one of the largest datasets with purely experimental log
k
p
and developed reliable and accurate prediction models for screening active ingredients and seeking unsynthesized compounds of dermatological medicines and cosmetics.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25616540</pmid><doi>10.1007/s11095-015-1629-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0724-8741 |
ispartof | Pharmaceutical research, 2015-07, Vol.32 (7), p.2360-2371 |
issn | 0724-8741 1573-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_1684436453 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Administration, Cutaneous Algorithms Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Databases, Factual Dermatologic Agents - administration & dosage Dermatologic Agents - chemistry Dermatologic Agents - pharmacokinetics Humans Linear Models Medical Law Models, Biological Permeability Pharmaceutical sciences Pharmacology/Toxicology Pharmacy Quantitative Structure-Activity Relationship Research Paper Skin Skin - metabolism Skin Absorption - drug effects Support Vector Machine |
title | In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Predictions%20of%20Human%20Skin%20Permeability%20using%20Nonlinear%20Quantitative%20Structure%E2%80%93Property%20Relationship%20Models&rft.jtitle=Pharmaceutical%20research&rft.au=Baba,%20Hiromi&rft.date=2015-07-01&rft.volume=32&rft.issue=7&rft.spage=2360&rft.epage=2371&rft.pages=2360-2371&rft.issn=0724-8741&rft.eissn=1573-904X&rft_id=info:doi/10.1007/s11095-015-1629-y&rft_dat=%3Cproquest_cross%3E1684436453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683724741&rft_id=info:pmid/25616540&rfr_iscdi=true |