PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis

In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected abo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2014-10, Vol.69, p.24-33
Hauptverfasser: Rill, Sven, Reinel, Dirk, Scheidt, Jörg, Zicari, Roberto V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 24
container_title Knowledge-based systems
container_volume 69
creator Rill, Sven
Reinel, Dirk
Scheidt, Jörg
Zicari, Roberto V.
description In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected about 4,000,000 tweets before and during the parliamentary election 2013 in Germany, from April until September 2013. It is shown, that new topics appearing in Twitter can be detected right after their occurrence. Moreover, we have compared our results to Google Trends. We observed that the topics emerged earlier in Twitter than in Google Trends. Finally, we show how these topics can be used to extend existing knowledge bases (web ontologies or semantic networks) which are required for concept-level sentiment analysis. For this, we utilized special Twitter hashtags, called sentiment hashtags, used by the German community during the parliamentary election.
doi_str_mv 10.1016/j.knosys.2014.05.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1684417391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705114001920</els_id><sourcerecordid>1651435964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-6234eb478287cc9becc16f74ac494e6096bf5b75f17f66aa027ea29f5c500d2b3</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxa2KSl1ov0EPPnJJOvb6T8IBCSFokZDaAz1bjjOhXpw42Aa0375ebc-ol5nD_N6T5j1CvjJoGTD1bdc-LTHvc8uBiRZkC9B9IBvWad5oAf0J2UAvodEg2SdymvMOADhn3YbkXzH4hzd_QW9sCns6YkFXfFxonCjOmB798kjXChXvbKAlrt5lWu_lzZeCidplpOUPUj-v1pXDxcXF4VqagK8YaMal-LmOStqwzz5_Jh8nGzJ--bfPyO_bm4frH839z-9311f3jZPQlUbxrcBB6I532rl-QOeYmrSwTvQCFfRqmOSg5cT0pJS1wDVa3k-yymHkw_aMnB991xSfXzAXM_vsMAS7YHzJhqlOCKa3PfsPVDKxlb0SFRVH1KWYc8LJrMnPNu0NA3Oow-zMsQ5zqMOANLWOKrs8yrB-_Ooxmew81qBGn2riZoz-fYO_XTmXhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651435964</pqid></control><display><type>article</type><title>PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rill, Sven ; Reinel, Dirk ; Scheidt, Jörg ; Zicari, Roberto V.</creator><creatorcontrib>Rill, Sven ; Reinel, Dirk ; Scheidt, Jörg ; Zicari, Roberto V.</creatorcontrib><description>In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected about 4,000,000 tweets before and during the parliamentary election 2013 in Germany, from April until September 2013. It is shown, that new topics appearing in Twitter can be detected right after their occurrence. Moreover, we have compared our results to Google Trends. We observed that the topics emerged earlier in Twitter than in Google Trends. Finally, we show how these topics can be used to extend existing knowledge bases (web ontologies or semantic networks) which are required for concept-level sentiment analysis. For this, we utilized special Twitter hashtags, called sentiment hashtags, used by the German community during the parliamentary election.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2014.05.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automatic text analysis ; Big data ; Blogs ; Channels ; Communities ; Concept-level sentiment analysis ; Data mining ; Detection ; Elections ; Knowledge ; Knowledge base ; Parliamentary ; Political aspects ; Social data analysis ; Social networks ; Topic detection ; Trends ; Twitter</subject><ispartof>Knowledge-based systems, 2014-10, Vol.69, p.24-33</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-6234eb478287cc9becc16f74ac494e6096bf5b75f17f66aa027ea29f5c500d2b3</citedby><cites>FETCH-LOGICAL-c508t-6234eb478287cc9becc16f74ac494e6096bf5b75f17f66aa027ea29f5c500d2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2014.05.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rill, Sven</creatorcontrib><creatorcontrib>Reinel, Dirk</creatorcontrib><creatorcontrib>Scheidt, Jörg</creatorcontrib><creatorcontrib>Zicari, Roberto V.</creatorcontrib><title>PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis</title><title>Knowledge-based systems</title><description>In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected about 4,000,000 tweets before and during the parliamentary election 2013 in Germany, from April until September 2013. It is shown, that new topics appearing in Twitter can be detected right after their occurrence. Moreover, we have compared our results to Google Trends. We observed that the topics emerged earlier in Twitter than in Google Trends. Finally, we show how these topics can be used to extend existing knowledge bases (web ontologies or semantic networks) which are required for concept-level sentiment analysis. For this, we utilized special Twitter hashtags, called sentiment hashtags, used by the German community during the parliamentary election.</description><subject>Automatic text analysis</subject><subject>Big data</subject><subject>Blogs</subject><subject>Channels</subject><subject>Communities</subject><subject>Concept-level sentiment analysis</subject><subject>Data mining</subject><subject>Detection</subject><subject>Elections</subject><subject>Knowledge</subject><subject>Knowledge base</subject><subject>Parliamentary</subject><subject>Political aspects</subject><subject>Social data analysis</subject><subject>Social networks</subject><subject>Topic detection</subject><subject>Trends</subject><subject>Twitter</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU9P3DAQxa2KSl1ov0EPPnJJOvb6T8IBCSFokZDaAz1bjjOhXpw42Aa0375ebc-ol5nD_N6T5j1CvjJoGTD1bdc-LTHvc8uBiRZkC9B9IBvWad5oAf0J2UAvodEg2SdymvMOADhn3YbkXzH4hzd_QW9sCns6YkFXfFxonCjOmB798kjXChXvbKAlrt5lWu_lzZeCidplpOUPUj-v1pXDxcXF4VqagK8YaMal-LmOStqwzz5_Jh8nGzJ--bfPyO_bm4frH839z-9311f3jZPQlUbxrcBB6I532rl-QOeYmrSwTvQCFfRqmOSg5cT0pJS1wDVa3k-yymHkw_aMnB991xSfXzAXM_vsMAS7YHzJhqlOCKa3PfsPVDKxlb0SFRVH1KWYc8LJrMnPNu0NA3Oow-zMsQ5zqMOANLWOKrs8yrB-_Ooxmew81qBGn2riZoz-fYO_XTmXhg</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Rill, Sven</creator><creator>Reinel, Dirk</creator><creator>Scheidt, Jörg</creator><creator>Zicari, Roberto V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BP</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20141001</creationdate><title>PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis</title><author>Rill, Sven ; Reinel, Dirk ; Scheidt, Jörg ; Zicari, Roberto V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-6234eb478287cc9becc16f74ac494e6096bf5b75f17f66aa027ea29f5c500d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automatic text analysis</topic><topic>Big data</topic><topic>Blogs</topic><topic>Channels</topic><topic>Communities</topic><topic>Concept-level sentiment analysis</topic><topic>Data mining</topic><topic>Detection</topic><topic>Elections</topic><topic>Knowledge</topic><topic>Knowledge base</topic><topic>Parliamentary</topic><topic>Political aspects</topic><topic>Social data analysis</topic><topic>Social networks</topic><topic>Topic detection</topic><topic>Trends</topic><topic>Twitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rill, Sven</creatorcontrib><creatorcontrib>Reinel, Dirk</creatorcontrib><creatorcontrib>Scheidt, Jörg</creatorcontrib><creatorcontrib>Zicari, Roberto V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library &amp; Information Sciences Abstracts (LISA) - CILIP Edition</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rill, Sven</au><au>Reinel, Dirk</au><au>Scheidt, Jörg</au><au>Zicari, Roberto V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis</atitle><jtitle>Knowledge-based systems</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>69</volume><spage>24</spage><epage>33</epage><pages>24-33</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected about 4,000,000 tweets before and during the parliamentary election 2013 in Germany, from April until September 2013. It is shown, that new topics appearing in Twitter can be detected right after their occurrence. Moreover, we have compared our results to Google Trends. We observed that the topics emerged earlier in Twitter than in Google Trends. Finally, we show how these topics can be used to extend existing knowledge bases (web ontologies or semantic networks) which are required for concept-level sentiment analysis. For this, we utilized special Twitter hashtags, called sentiment hashtags, used by the German community during the parliamentary election.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2014.05.008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2014-10, Vol.69, p.24-33
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_1684417391
source Elsevier ScienceDirect Journals Complete
subjects Automatic text analysis
Big data
Blogs
Channels
Communities
Concept-level sentiment analysis
Data mining
Detection
Elections
Knowledge
Knowledge base
Parliamentary
Political aspects
Social data analysis
Social networks
Topic detection
Trends
Twitter
title PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PoliTwi:%20Early%20detection%20of%20emerging%20political%20topics%20on%20twitter%20and%20the%20impact%20on%20concept-level%20sentiment%20analysis&rft.jtitle=Knowledge-based%20systems&rft.au=Rill,%20Sven&rft.date=2014-10-01&rft.volume=69&rft.spage=24&rft.epage=33&rft.pages=24-33&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2014.05.008&rft_dat=%3Cproquest_cross%3E1651435964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651435964&rft_id=info:pmid/&rft_els_id=S0950705114001920&rfr_iscdi=true