PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis
In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected abo...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2014-10, Vol.69, p.24-33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | |
container_start_page | 24 |
container_title | Knowledge-based systems |
container_volume | 69 |
creator | Rill, Sven Reinel, Dirk Scheidt, Jörg Zicari, Roberto V. |
description | In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected about 4,000,000 tweets before and during the parliamentary election 2013 in Germany, from April until September 2013. It is shown, that new topics appearing in Twitter can be detected right after their occurrence. Moreover, we have compared our results to Google Trends. We observed that the topics emerged earlier in Twitter than in Google Trends.
Finally, we show how these topics can be used to extend existing knowledge bases (web ontologies or semantic networks) which are required for concept-level sentiment analysis. For this, we utilized special Twitter hashtags, called sentiment hashtags, used by the German community during the parliamentary election. |
doi_str_mv | 10.1016/j.knosys.2014.05.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1684417391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705114001920</els_id><sourcerecordid>1651435964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-6234eb478287cc9becc16f74ac494e6096bf5b75f17f66aa027ea29f5c500d2b3</originalsourceid><addsrcrecordid>eNqNkU9P3DAQxa2KSl1ov0EPPnJJOvb6T8IBCSFokZDaAz1bjjOhXpw42Aa0375ebc-ol5nD_N6T5j1CvjJoGTD1bdc-LTHvc8uBiRZkC9B9IBvWad5oAf0J2UAvodEg2SdymvMOADhn3YbkXzH4hzd_QW9sCns6YkFXfFxonCjOmB798kjXChXvbKAlrt5lWu_lzZeCidplpOUPUj-v1pXDxcXF4VqagK8YaMal-LmOStqwzz5_Jh8nGzJ--bfPyO_bm4frH839z-9311f3jZPQlUbxrcBB6I532rl-QOeYmrSwTvQCFfRqmOSg5cT0pJS1wDVa3k-yymHkw_aMnB991xSfXzAXM_vsMAS7YHzJhqlOCKa3PfsPVDKxlb0SFRVH1KWYc8LJrMnPNu0NA3Oow-zMsQ5zqMOANLWOKrs8yrB-_Ooxmew81qBGn2riZoz-fYO_XTmXhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651435964</pqid></control><display><type>article</type><title>PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rill, Sven ; Reinel, Dirk ; Scheidt, Jörg ; Zicari, Roberto V.</creator><creatorcontrib>Rill, Sven ; Reinel, Dirk ; Scheidt, Jörg ; Zicari, Roberto V.</creatorcontrib><description>In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected about 4,000,000 tweets before and during the parliamentary election 2013 in Germany, from April until September 2013. It is shown, that new topics appearing in Twitter can be detected right after their occurrence. Moreover, we have compared our results to Google Trends. We observed that the topics emerged earlier in Twitter than in Google Trends.
Finally, we show how these topics can be used to extend existing knowledge bases (web ontologies or semantic networks) which are required for concept-level sentiment analysis. For this, we utilized special Twitter hashtags, called sentiment hashtags, used by the German community during the parliamentary election.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2014.05.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automatic text analysis ; Big data ; Blogs ; Channels ; Communities ; Concept-level sentiment analysis ; Data mining ; Detection ; Elections ; Knowledge ; Knowledge base ; Parliamentary ; Political aspects ; Social data analysis ; Social networks ; Topic detection ; Trends ; Twitter</subject><ispartof>Knowledge-based systems, 2014-10, Vol.69, p.24-33</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-6234eb478287cc9becc16f74ac494e6096bf5b75f17f66aa027ea29f5c500d2b3</citedby><cites>FETCH-LOGICAL-c508t-6234eb478287cc9becc16f74ac494e6096bf5b75f17f66aa027ea29f5c500d2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2014.05.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rill, Sven</creatorcontrib><creatorcontrib>Reinel, Dirk</creatorcontrib><creatorcontrib>Scheidt, Jörg</creatorcontrib><creatorcontrib>Zicari, Roberto V.</creatorcontrib><title>PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis</title><title>Knowledge-based systems</title><description>In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected about 4,000,000 tweets before and during the parliamentary election 2013 in Germany, from April until September 2013. It is shown, that new topics appearing in Twitter can be detected right after their occurrence. Moreover, we have compared our results to Google Trends. We observed that the topics emerged earlier in Twitter than in Google Trends.
Finally, we show how these topics can be used to extend existing knowledge bases (web ontologies or semantic networks) which are required for concept-level sentiment analysis. For this, we utilized special Twitter hashtags, called sentiment hashtags, used by the German community during the parliamentary election.</description><subject>Automatic text analysis</subject><subject>Big data</subject><subject>Blogs</subject><subject>Channels</subject><subject>Communities</subject><subject>Concept-level sentiment analysis</subject><subject>Data mining</subject><subject>Detection</subject><subject>Elections</subject><subject>Knowledge</subject><subject>Knowledge base</subject><subject>Parliamentary</subject><subject>Political aspects</subject><subject>Social data analysis</subject><subject>Social networks</subject><subject>Topic detection</subject><subject>Trends</subject><subject>Twitter</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU9P3DAQxa2KSl1ov0EPPnJJOvb6T8IBCSFokZDaAz1bjjOhXpw42Aa0375ebc-ol5nD_N6T5j1CvjJoGTD1bdc-LTHvc8uBiRZkC9B9IBvWad5oAf0J2UAvodEg2SdymvMOADhn3YbkXzH4hzd_QW9sCns6YkFXfFxonCjOmB798kjXChXvbKAlrt5lWu_lzZeCidplpOUPUj-v1pXDxcXF4VqagK8YaMal-LmOStqwzz5_Jh8nGzJ--bfPyO_bm4frH839z-9311f3jZPQlUbxrcBB6I532rl-QOeYmrSwTvQCFfRqmOSg5cT0pJS1wDVa3k-yymHkw_aMnB991xSfXzAXM_vsMAS7YHzJhqlOCKa3PfsPVDKxlb0SFRVH1KWYc8LJrMnPNu0NA3Oow-zMsQ5zqMOANLWOKrs8yrB-_Ooxmew81qBGn2riZoz-fYO_XTmXhg</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Rill, Sven</creator><creator>Reinel, Dirk</creator><creator>Scheidt, Jörg</creator><creator>Zicari, Roberto V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BP</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20141001</creationdate><title>PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis</title><author>Rill, Sven ; Reinel, Dirk ; Scheidt, Jörg ; Zicari, Roberto V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-6234eb478287cc9becc16f74ac494e6096bf5b75f17f66aa027ea29f5c500d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automatic text analysis</topic><topic>Big data</topic><topic>Blogs</topic><topic>Channels</topic><topic>Communities</topic><topic>Concept-level sentiment analysis</topic><topic>Data mining</topic><topic>Detection</topic><topic>Elections</topic><topic>Knowledge</topic><topic>Knowledge base</topic><topic>Parliamentary</topic><topic>Political aspects</topic><topic>Social data analysis</topic><topic>Social networks</topic><topic>Topic detection</topic><topic>Trends</topic><topic>Twitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rill, Sven</creatorcontrib><creatorcontrib>Reinel, Dirk</creatorcontrib><creatorcontrib>Scheidt, Jörg</creatorcontrib><creatorcontrib>Zicari, Roberto V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library & Information Sciences Abstracts (LISA) - CILIP Edition</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rill, Sven</au><au>Reinel, Dirk</au><au>Scheidt, Jörg</au><au>Zicari, Roberto V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis</atitle><jtitle>Knowledge-based systems</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>69</volume><spage>24</spage><epage>33</epage><pages>24-33</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>In this work, we present a system called PoliTwi, which was designed to detect emerging political topics (Top Topics) in Twitter sooner than other standard information channels. The recognized Top Topics are shared via different channels with the wider public. For the analysis, we have collected about 4,000,000 tweets before and during the parliamentary election 2013 in Germany, from April until September 2013. It is shown, that new topics appearing in Twitter can be detected right after their occurrence. Moreover, we have compared our results to Google Trends. We observed that the topics emerged earlier in Twitter than in Google Trends.
Finally, we show how these topics can be used to extend existing knowledge bases (web ontologies or semantic networks) which are required for concept-level sentiment analysis. For this, we utilized special Twitter hashtags, called sentiment hashtags, used by the German community during the parliamentary election.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2014.05.008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2014-10, Vol.69, p.24-33 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1684417391 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Automatic text analysis Big data Blogs Channels Communities Concept-level sentiment analysis Data mining Detection Elections Knowledge Knowledge base Parliamentary Political aspects Social data analysis Social networks Topic detection Trends |
title | PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PoliTwi:%20Early%20detection%20of%20emerging%20political%20topics%20on%20twitter%20and%20the%20impact%20on%20concept-level%20sentiment%20analysis&rft.jtitle=Knowledge-based%20systems&rft.au=Rill,%20Sven&rft.date=2014-10-01&rft.volume=69&rft.spage=24&rft.epage=33&rft.pages=24-33&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2014.05.008&rft_dat=%3Cproquest_cross%3E1651435964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651435964&rft_id=info:pmid/&rft_els_id=S0950705114001920&rfr_iscdi=true |