Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters
Purpose Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE a...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2015-06, Vol.73 (6), p.2174-2184 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2184 |
---|---|
container_issue | 6 |
container_start_page | 2174 |
container_title | Magnetic resonance in medicine |
container_volume | 73 |
creator | Collier, Quinten Veraart, Jelle Jeurissen, Ben den Dekker, Arnold J. Sijbers, Jan |
description | Purpose
Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088–1095; Chang et al. Magn Reson Med 2012; 68:1654–1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive.
Method
In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel‐wise identification of outliers in diffusion‐weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts.
Results
Both simulations and real data experiments were conducted to compare IRLLS with other state‐of‐the‐art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal‐to‐noise ratio is low.
Conclusion
The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state‐of‐the‐art techniques for the robust estimation of diffusion‐weighted magnetic resonance parameters. Magn Reson Med 73:2174–2184, 2015. © 2014 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/mrm.25351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1683352380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3687850781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-2ce73920471c14eb4978e9a2965155cc0b0294023a5f9cc0c76ea5023e99bb153</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhi1UVBbogT9QWeqlSAT8GcdHQLBFXUBCrThajndCTZN4sZMCF357vSxwqFSJkzXyM49n_CK0Q8k-JYQddLHbZ5JLuoYmVDJWMKnFBzQhSpCCUy020GZKt4QQrZX4iDaY0FUpBJmgp7MBoh38H8AR7sHf_Bpgjlvfg424BZsGnO5GGyHhJkRsnRszDnu4yVd72PZzHEM9ZgzS4LtsCj0ODZ77phnTsujsTQ-Dd9mfQm97B3hho-0gP5y20Xpj2wSfXs4t9PP05Mfxt2J2OT07PpwVTkhNC-ZAcc2IUNRRAbXQqgJtmS4lldI5UhOmBWHcykbn0qkSrMw1aF3XVPIt9HXlXcRwN-ZRTeeTg7a1PYQxGVpWnEvGK_IelAlW5mky-uUf9DaMsc-LLCnKKybVktpdUS6GlCI0ZhHzT8VHQ4lZ5mdyfuY5v8x-fjGOdQfzN_I1sAwcrIB738Lj_03m_Or8VVmsOnwa4OGtw8bfplRcSXN9MTXXR7Pq-8URMVP-F4HYs74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681382570</pqid></control><display><type>article</type><title>Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Free Archive</source><creator>Collier, Quinten ; Veraart, Jelle ; Jeurissen, Ben ; den Dekker, Arnold J. ; Sijbers, Jan</creator><creatorcontrib>Collier, Quinten ; Veraart, Jelle ; Jeurissen, Ben ; den Dekker, Arnold J. ; Sijbers, Jan</creatorcontrib><description>Purpose
Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088–1095; Chang et al. Magn Reson Med 2012; 68:1654–1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive.
Method
In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel‐wise identification of outliers in diffusion‐weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts.
Results
Both simulations and real data experiments were conducted to compare IRLLS with other state‐of‐the‐art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal‐to‐noise ratio is low.
Conclusion
The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state‐of‐the‐art techniques for the robust estimation of diffusion‐weighted magnetic resonance parameters. Magn Reson Med 73:2174–2184, 2015. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.25351</identifier><identifier>PMID: 24986440</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Brain Mapping - methods ; Diffusion Magnetic Resonance Imaging - methods ; diffusion tensor imaging ; Female ; Humans ; Image Enhancement - methods ; Infant, Newborn ; Least-Squares Analysis ; MRI ; outlier detection ; robust ; Signal-To-Noise Ratio ; weighted linear least squares</subject><ispartof>Magnetic resonance in medicine, 2015-06, Vol.73 (6), p.2174-2184</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-2ce73920471c14eb4978e9a2965155cc0b0294023a5f9cc0c76ea5023e99bb153</citedby><cites>FETCH-LOGICAL-c4591-2ce73920471c14eb4978e9a2965155cc0b0294023a5f9cc0c76ea5023e99bb153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.25351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.25351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24986440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collier, Quinten</creatorcontrib><creatorcontrib>Veraart, Jelle</creatorcontrib><creatorcontrib>Jeurissen, Ben</creatorcontrib><creatorcontrib>den Dekker, Arnold J.</creatorcontrib><creatorcontrib>Sijbers, Jan</creatorcontrib><title>Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose
Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088–1095; Chang et al. Magn Reson Med 2012; 68:1654–1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive.
Method
In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel‐wise identification of outliers in diffusion‐weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts.
Results
Both simulations and real data experiments were conducted to compare IRLLS with other state‐of‐the‐art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal‐to‐noise ratio is low.
Conclusion
The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state‐of‐the‐art techniques for the robust estimation of diffusion‐weighted magnetic resonance parameters. Magn Reson Med 73:2174–2184, 2015. © 2014 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>Brain Mapping - methods</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion tensor imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Infant, Newborn</subject><subject>Least-Squares Analysis</subject><subject>MRI</subject><subject>outlier detection</subject><subject>robust</subject><subject>Signal-To-Noise Ratio</subject><subject>weighted linear least squares</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhi1UVBbogT9QWeqlSAT8GcdHQLBFXUBCrThajndCTZN4sZMCF357vSxwqFSJkzXyM49n_CK0Q8k-JYQddLHbZ5JLuoYmVDJWMKnFBzQhSpCCUy020GZKt4QQrZX4iDaY0FUpBJmgp7MBoh38H8AR7sHf_Bpgjlvfg424BZsGnO5GGyHhJkRsnRszDnu4yVd72PZzHEM9ZgzS4LtsCj0ODZ77phnTsujsTQ-Dd9mfQm97B3hho-0gP5y20Xpj2wSfXs4t9PP05Mfxt2J2OT07PpwVTkhNC-ZAcc2IUNRRAbXQqgJtmS4lldI5UhOmBWHcykbn0qkSrMw1aF3XVPIt9HXlXcRwN-ZRTeeTg7a1PYQxGVpWnEvGK_IelAlW5mky-uUf9DaMsc-LLCnKKybVktpdUS6GlCI0ZhHzT8VHQ4lZ5mdyfuY5v8x-fjGOdQfzN_I1sAwcrIB738Lj_03m_Or8VVmsOnwa4OGtw8bfplRcSXN9MTXXR7Pq-8URMVP-F4HYs74</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Collier, Quinten</creator><creator>Veraart, Jelle</creator><creator>Jeurissen, Ben</creator><creator>den Dekker, Arnold J.</creator><creator>Sijbers, Jan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201506</creationdate><title>Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters</title><author>Collier, Quinten ; Veraart, Jelle ; Jeurissen, Ben ; den Dekker, Arnold J. ; Sijbers, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-2ce73920471c14eb4978e9a2965155cc0b0294023a5f9cc0c76ea5023e99bb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Brain Mapping - methods</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion tensor imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Infant, Newborn</topic><topic>Least-Squares Analysis</topic><topic>MRI</topic><topic>outlier detection</topic><topic>robust</topic><topic>Signal-To-Noise Ratio</topic><topic>weighted linear least squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collier, Quinten</creatorcontrib><creatorcontrib>Veraart, Jelle</creatorcontrib><creatorcontrib>Jeurissen, Ben</creatorcontrib><creatorcontrib>den Dekker, Arnold J.</creatorcontrib><creatorcontrib>Sijbers, Jan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collier, Quinten</au><au>Veraart, Jelle</au><au>Jeurissen, Ben</au><au>den Dekker, Arnold J.</au><au>Sijbers, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2015-06</date><risdate>2015</risdate><volume>73</volume><issue>6</issue><spage>2174</spage><epage>2184</epage><pages>2174-2184</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose
Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088–1095; Chang et al. Magn Reson Med 2012; 68:1654–1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive.
Method
In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel‐wise identification of outliers in diffusion‐weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts.
Results
Both simulations and real data experiments were conducted to compare IRLLS with other state‐of‐the‐art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal‐to‐noise ratio is low.
Conclusion
The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state‐of‐the‐art techniques for the robust estimation of diffusion‐weighted magnetic resonance parameters. Magn Reson Med 73:2174–2184, 2015. © 2014 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24986440</pmid><doi>10.1002/mrm.25351</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2015-06, Vol.73 (6), p.2174-2184 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1683352380 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Free Archive |
subjects | Algorithms Brain Mapping - methods Diffusion Magnetic Resonance Imaging - methods diffusion tensor imaging Female Humans Image Enhancement - methods Infant, Newborn Least-Squares Analysis MRI outlier detection robust Signal-To-Noise Ratio weighted linear least squares |
title | Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20reweighted%20linear%20least%20squares%20for%20accurate,%20fast,%20and%20robust%20estimation%20of%20diffusion%20magnetic%20resonance%20parameters&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Collier,%20Quinten&rft.date=2015-06&rft.volume=73&rft.issue=6&rft.spage=2174&rft.epage=2184&rft.pages=2174-2184&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.25351&rft_dat=%3Cproquest_cross%3E3687850781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681382570&rft_id=info:pmid/24986440&rfr_iscdi=true |