Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters

Purpose Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2015-06, Vol.73 (6), p.2174-2184
Hauptverfasser: Collier, Quinten, Veraart, Jelle, Jeurissen, Ben, den Dekker, Arnold J., Sijbers, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2184
container_issue 6
container_start_page 2174
container_title Magnetic resonance in medicine
container_volume 73
creator Collier, Quinten
Veraart, Jelle
Jeurissen, Ben
den Dekker, Arnold J.
Sijbers, Jan
description Purpose Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088–1095; Chang et al. Magn Reson Med 2012; 68:1654–1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive. Method In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel‐wise identification of outliers in diffusion‐weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts. Results Both simulations and real data experiments were conducted to compare IRLLS with other state‐of‐the‐art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal‐to‐noise ratio is low. Conclusion The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state‐of‐the‐art techniques for the robust estimation of diffusion‐weighted magnetic resonance parameters. Magn Reson Med 73:2174–2184, 2015. © 2014 Wiley Periodicals, Inc.
doi_str_mv 10.1002/mrm.25351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1683352380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3687850781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4591-2ce73920471c14eb4978e9a2965155cc0b0294023a5f9cc0c76ea5023e99bb153</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhi1UVBbogT9QWeqlSAT8GcdHQLBFXUBCrThajndCTZN4sZMCF357vSxwqFSJkzXyM49n_CK0Q8k-JYQddLHbZ5JLuoYmVDJWMKnFBzQhSpCCUy020GZKt4QQrZX4iDaY0FUpBJmgp7MBoh38H8AR7sHf_Bpgjlvfg424BZsGnO5GGyHhJkRsnRszDnu4yVd72PZzHEM9ZgzS4LtsCj0ODZ77phnTsujsTQ-Dd9mfQm97B3hho-0gP5y20Xpj2wSfXs4t9PP05Mfxt2J2OT07PpwVTkhNC-ZAcc2IUNRRAbXQqgJtmS4lldI5UhOmBWHcykbn0qkSrMw1aF3XVPIt9HXlXcRwN-ZRTeeTg7a1PYQxGVpWnEvGK_IelAlW5mky-uUf9DaMsc-LLCnKKybVktpdUS6GlCI0ZhHzT8VHQ4lZ5mdyfuY5v8x-fjGOdQfzN_I1sAwcrIB738Lj_03m_Or8VVmsOnwa4OGtw8bfplRcSXN9MTXXR7Pq-8URMVP-F4HYs74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681382570</pqid></control><display><type>article</type><title>Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Free Archive</source><creator>Collier, Quinten ; Veraart, Jelle ; Jeurissen, Ben ; den Dekker, Arnold J. ; Sijbers, Jan</creator><creatorcontrib>Collier, Quinten ; Veraart, Jelle ; Jeurissen, Ben ; den Dekker, Arnold J. ; Sijbers, Jan</creatorcontrib><description>Purpose Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088–1095; Chang et al. Magn Reson Med 2012; 68:1654–1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive. Method In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel‐wise identification of outliers in diffusion‐weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts. Results Both simulations and real data experiments were conducted to compare IRLLS with other state‐of‐the‐art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal‐to‐noise ratio is low. Conclusion The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state‐of‐the‐art techniques for the robust estimation of diffusion‐weighted magnetic resonance parameters. Magn Reson Med 73:2174–2184, 2015. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.25351</identifier><identifier>PMID: 24986440</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Brain Mapping - methods ; Diffusion Magnetic Resonance Imaging - methods ; diffusion tensor imaging ; Female ; Humans ; Image Enhancement - methods ; Infant, Newborn ; Least-Squares Analysis ; MRI ; outlier detection ; robust ; Signal-To-Noise Ratio ; weighted linear least squares</subject><ispartof>Magnetic resonance in medicine, 2015-06, Vol.73 (6), p.2174-2184</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4591-2ce73920471c14eb4978e9a2965155cc0b0294023a5f9cc0c76ea5023e99bb153</citedby><cites>FETCH-LOGICAL-c4591-2ce73920471c14eb4978e9a2965155cc0b0294023a5f9cc0c76ea5023e99bb153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.25351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.25351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24986440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collier, Quinten</creatorcontrib><creatorcontrib>Veraart, Jelle</creatorcontrib><creatorcontrib>Jeurissen, Ben</creatorcontrib><creatorcontrib>den Dekker, Arnold J.</creatorcontrib><creatorcontrib>Sijbers, Jan</creatorcontrib><title>Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088–1095; Chang et al. Magn Reson Med 2012; 68:1654–1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive. Method In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel‐wise identification of outliers in diffusion‐weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts. Results Both simulations and real data experiments were conducted to compare IRLLS with other state‐of‐the‐art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal‐to‐noise ratio is low. Conclusion The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state‐of‐the‐art techniques for the robust estimation of diffusion‐weighted magnetic resonance parameters. Magn Reson Med 73:2174–2184, 2015. © 2014 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>Brain Mapping - methods</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion tensor imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Infant, Newborn</subject><subject>Least-Squares Analysis</subject><subject>MRI</subject><subject>outlier detection</subject><subject>robust</subject><subject>Signal-To-Noise Ratio</subject><subject>weighted linear least squares</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1P3DAQhi1UVBbogT9QWeqlSAT8GcdHQLBFXUBCrThajndCTZN4sZMCF357vSxwqFSJkzXyM49n_CK0Q8k-JYQddLHbZ5JLuoYmVDJWMKnFBzQhSpCCUy020GZKt4QQrZX4iDaY0FUpBJmgp7MBoh38H8AR7sHf_Bpgjlvfg424BZsGnO5GGyHhJkRsnRszDnu4yVd72PZzHEM9ZgzS4LtsCj0ODZ77phnTsujsTQ-Dd9mfQm97B3hho-0gP5y20Xpj2wSfXs4t9PP05Mfxt2J2OT07PpwVTkhNC-ZAcc2IUNRRAbXQqgJtmS4lldI5UhOmBWHcykbn0qkSrMw1aF3XVPIt9HXlXcRwN-ZRTeeTg7a1PYQxGVpWnEvGK_IelAlW5mky-uUf9DaMsc-LLCnKKybVktpdUS6GlCI0ZhHzT8VHQ4lZ5mdyfuY5v8x-fjGOdQfzN_I1sAwcrIB738Lj_03m_Or8VVmsOnwa4OGtw8bfplRcSXN9MTXXR7Pq-8URMVP-F4HYs74</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Collier, Quinten</creator><creator>Veraart, Jelle</creator><creator>Jeurissen, Ben</creator><creator>den Dekker, Arnold J.</creator><creator>Sijbers, Jan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201506</creationdate><title>Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters</title><author>Collier, Quinten ; Veraart, Jelle ; Jeurissen, Ben ; den Dekker, Arnold J. ; Sijbers, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4591-2ce73920471c14eb4978e9a2965155cc0b0294023a5f9cc0c76ea5023e99bb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Brain Mapping - methods</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion tensor imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Infant, Newborn</topic><topic>Least-Squares Analysis</topic><topic>MRI</topic><topic>outlier detection</topic><topic>robust</topic><topic>Signal-To-Noise Ratio</topic><topic>weighted linear least squares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collier, Quinten</creatorcontrib><creatorcontrib>Veraart, Jelle</creatorcontrib><creatorcontrib>Jeurissen, Ben</creatorcontrib><creatorcontrib>den Dekker, Arnold J.</creatorcontrib><creatorcontrib>Sijbers, Jan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collier, Quinten</au><au>Veraart, Jelle</au><au>Jeurissen, Ben</au><au>den Dekker, Arnold J.</au><au>Sijbers, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2015-06</date><risdate>2015</risdate><volume>73</volume><issue>6</issue><spage>2174</spage><epage>2184</epage><pages>2174-2184</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose Diffusion‐weighted magnetic resonance imaging suffers from physiological noise, such as artifacts caused by motion or system instabilities. Therefore, there is a need for robust diffusion parameter estimation techniques. In the past, several techniques have been proposed, including RESTORE and iRESTORE (Chang et al. Magn Reson Med 2005; 53:1088–1095; Chang et al. Magn Reson Med 2012; 68:1654–1663). However, these techniques are based on nonlinear estimators and are consequently computationally intensive. Method In this work, we present a new, robust, iteratively reweighted linear least squares (IRLLS) estimator. IRLLS performs a voxel‐wise identification of outliers in diffusion‐weighted magnetic resonance images, where it exploits the natural skewness of the data distribution to become more sensitive to both signal hyperintensities and signal dropouts. Results Both simulations and real data experiments were conducted to compare IRLLS with other state‐of‐the‐art techniques. While IRLLS showed no significant loss in accuracy or precision, it proved to be substantially faster than both RESTORE and iRESTORE. In addition, IRLLS proved to be even more robust when considering the overestimation of the noise level or when the signal‐to‐noise ratio is low. Conclusion The substantially shortened calculation time in combination with the increased robustness and accuracy, make IRLLS a practical and reliable alternative to current state‐of‐the‐art techniques for the robust estimation of diffusion‐weighted magnetic resonance parameters. Magn Reson Med 73:2174–2184, 2015. © 2014 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24986440</pmid><doi>10.1002/mrm.25351</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2015-06, Vol.73 (6), p.2174-2184
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1683352380
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Free Archive
subjects Algorithms
Brain Mapping - methods
Diffusion Magnetic Resonance Imaging - methods
diffusion tensor imaging
Female
Humans
Image Enhancement - methods
Infant, Newborn
Least-Squares Analysis
MRI
outlier detection
robust
Signal-To-Noise Ratio
weighted linear least squares
title Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20reweighted%20linear%20least%20squares%20for%20accurate,%20fast,%20and%20robust%20estimation%20of%20diffusion%20magnetic%20resonance%20parameters&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Collier,%20Quinten&rft.date=2015-06&rft.volume=73&rft.issue=6&rft.spage=2174&rft.epage=2184&rft.pages=2174-2184&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.25351&rft_dat=%3Cproquest_cross%3E3687850781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681382570&rft_id=info:pmid/24986440&rfr_iscdi=true