Submesoscale Water-Mass Spectra in the Sargasso Sea

Submesoscale stirring contributes to the cascade of tracer variance from large to small scales. Multiple nested surveys in the summer Sargasso Sea with tow-yo and autonomous platforms captured submesoscale water-mass variability in the seasonal pycnocline at 20–60-m depths. To filter out internal wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical oceanography 2015-05, Vol.45 (5), p.1325-1338
Hauptverfasser: Kunze, E., Klymak, J. M., Lien, R.-C., Ferrari, R., Lee, C. M., Sundermeyer, M. A., Goodman, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1338
container_issue 5
container_start_page 1325
container_title Journal of physical oceanography
container_volume 45
creator Kunze, E.
Klymak, J. M.
Lien, R.-C.
Ferrari, R.
Lee, C. M.
Sundermeyer, M. A.
Goodman, L.
description Submesoscale stirring contributes to the cascade of tracer variance from large to small scales. Multiple nested surveys in the summer Sargasso Sea with tow-yo and autonomous platforms captured submesoscale water-mass variability in the seasonal pycnocline at 20–60-m depths. To filter out internal waves that dominate dynamic signals on these scales, spectra for salinity anomalies on isopycnals were formed. Salinity-gradient spectra are approximately flat with slopes of −0.2 ± 0.2 over horizontal wavelengths of 0.03–10 km. While the two to three realizations presented here might be biased, more representative measurements in the literature are consistent with a nearly flat submesoscale passive tracer gradient spectrum for horizontal wavelengths in excess of 1 km. A review of mechanisms that could be responsible for a flat passive tracer gradient spectrum rules out (i) quasigeostrophic eddy stirring, (ii) atmospheric forcing through a relict submesoscale winter mixed layer structure or nocturnal mixed layer deepening, (iii) a downscale vortical-mode cascade, and (iv) horizontal diffusion because of shear dispersion of diapycnal mixing. Internal-wave horizontal strain appears to be able to explain horizontal wavenumbers of 0.1–7 cycles per kilometer (cpkm) but not the highest resolved wavenumbers (7–30 cpkm). Submesoscale subduction cannot be ruled out at these depths, though previous observations observe a flat spectrum well below subduction depths, so this seems unlikely. Primitive equation numerical modeling suggests that nonquasigeostrophic subinertial horizontal stirring can produce a flat spectrum. The last need not be limited to mode-one interior or surface Rossby wavenumbers of quasigeostrophic theory but may have a broaderband spectrum extending to smaller horizontal scales associated with frontogenesis and frontal instabilities as well as internal waves.
doi_str_mv 10.1175/JPO-D-14-0108.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1683348266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1683348266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9754fe7e8c8d533a2c975cb58a6e2b7ad7c12b998718cb1781834716a68435983</originalsourceid><addsrcrecordid>eNpdkDtLA0EUhQdRMEZr2wUbm0nmzvNuKfFNJMIqlsPs5EYTNtk4syn8926IldWBw8fh8DF2CWIE4Mz4-XXGbzloLkDgCI7YAIwUXGg0x2wghJRcWSdO2VnOKyGEBVkOmKp29Zpym2NoqPgIHSX-EnIuqi3FLoViuSm6LyqqkD77ui0qCufsZBGaTBd_OWTv93dvk0c-nT08TW6mPGpRdrx0Ri_IEUacG6WCjH0Ta4PBkqxdmLsIsi5LdICxBoeASjuwwaJWpkQ1ZNeH3W1qv3eUO79e5khNEzbU7rIHi0pplNb26NU_dNXu0qZ_t6fAAGrjemp8oGJqc0608Nu0XIf040H4vUTfS_S3HrTfS_SgfgF3TmG7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681518457</pqid></control><display><type>article</type><title>Submesoscale Water-Mass Spectra in the Sargasso Sea</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kunze, E. ; Klymak, J. M. ; Lien, R.-C. ; Ferrari, R. ; Lee, C. M. ; Sundermeyer, M. A. ; Goodman, L.</creator><creatorcontrib>Kunze, E. ; Klymak, J. M. ; Lien, R.-C. ; Ferrari, R. ; Lee, C. M. ; Sundermeyer, M. A. ; Goodman, L.</creatorcontrib><description>Submesoscale stirring contributes to the cascade of tracer variance from large to small scales. Multiple nested surveys in the summer Sargasso Sea with tow-yo and autonomous platforms captured submesoscale water-mass variability in the seasonal pycnocline at 20–60-m depths. To filter out internal waves that dominate dynamic signals on these scales, spectra for salinity anomalies on isopycnals were formed. Salinity-gradient spectra are approximately flat with slopes of −0.2 ± 0.2 over horizontal wavelengths of 0.03–10 km. While the two to three realizations presented here might be biased, more representative measurements in the literature are consistent with a nearly flat submesoscale passive tracer gradient spectrum for horizontal wavelengths in excess of 1 km. A review of mechanisms that could be responsible for a flat passive tracer gradient spectrum rules out (i) quasigeostrophic eddy stirring, (ii) atmospheric forcing through a relict submesoscale winter mixed layer structure or nocturnal mixed layer deepening, (iii) a downscale vortical-mode cascade, and (iv) horizontal diffusion because of shear dispersion of diapycnal mixing. Internal-wave horizontal strain appears to be able to explain horizontal wavenumbers of 0.1–7 cycles per kilometer (cpkm) but not the highest resolved wavenumbers (7–30 cpkm). Submesoscale subduction cannot be ruled out at these depths, though previous observations observe a flat spectrum well below subduction depths, so this seems unlikely. Primitive equation numerical modeling suggests that nonquasigeostrophic subinertial horizontal stirring can produce a flat spectrum. The last need not be limited to mode-one interior or surface Rossby wavenumbers of quasigeostrophic theory but may have a broaderband spectrum extending to smaller horizontal scales associated with frontogenesis and frontal instabilities as well as internal waves.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-14-0108.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric forcing ; Internal waves ; Mass spectra ; Meteorology ; Salinity ; Wavelengths</subject><ispartof>Journal of physical oceanography, 2015-05, Vol.45 (5), p.1325-1338</ispartof><rights>Copyright American Meteorological Society May 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-9754fe7e8c8d533a2c975cb58a6e2b7ad7c12b998718cb1781834716a68435983</citedby><cites>FETCH-LOGICAL-c409t-9754fe7e8c8d533a2c975cb58a6e2b7ad7c12b998718cb1781834716a68435983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3679,27923,27924</link.rule.ids></links><search><creatorcontrib>Kunze, E.</creatorcontrib><creatorcontrib>Klymak, J. M.</creatorcontrib><creatorcontrib>Lien, R.-C.</creatorcontrib><creatorcontrib>Ferrari, R.</creatorcontrib><creatorcontrib>Lee, C. M.</creatorcontrib><creatorcontrib>Sundermeyer, M. A.</creatorcontrib><creatorcontrib>Goodman, L.</creatorcontrib><title>Submesoscale Water-Mass Spectra in the Sargasso Sea</title><title>Journal of physical oceanography</title><description>Submesoscale stirring contributes to the cascade of tracer variance from large to small scales. Multiple nested surveys in the summer Sargasso Sea with tow-yo and autonomous platforms captured submesoscale water-mass variability in the seasonal pycnocline at 20–60-m depths. To filter out internal waves that dominate dynamic signals on these scales, spectra for salinity anomalies on isopycnals were formed. Salinity-gradient spectra are approximately flat with slopes of −0.2 ± 0.2 over horizontal wavelengths of 0.03–10 km. While the two to three realizations presented here might be biased, more representative measurements in the literature are consistent with a nearly flat submesoscale passive tracer gradient spectrum for horizontal wavelengths in excess of 1 km. A review of mechanisms that could be responsible for a flat passive tracer gradient spectrum rules out (i) quasigeostrophic eddy stirring, (ii) atmospheric forcing through a relict submesoscale winter mixed layer structure or nocturnal mixed layer deepening, (iii) a downscale vortical-mode cascade, and (iv) horizontal diffusion because of shear dispersion of diapycnal mixing. Internal-wave horizontal strain appears to be able to explain horizontal wavenumbers of 0.1–7 cycles per kilometer (cpkm) but not the highest resolved wavenumbers (7–30 cpkm). Submesoscale subduction cannot be ruled out at these depths, though previous observations observe a flat spectrum well below subduction depths, so this seems unlikely. Primitive equation numerical modeling suggests that nonquasigeostrophic subinertial horizontal stirring can produce a flat spectrum. The last need not be limited to mode-one interior or surface Rossby wavenumbers of quasigeostrophic theory but may have a broaderband spectrum extending to smaller horizontal scales associated with frontogenesis and frontal instabilities as well as internal waves.</description><subject>Atmospheric forcing</subject><subject>Internal waves</subject><subject>Mass spectra</subject><subject>Meteorology</subject><subject>Salinity</subject><subject>Wavelengths</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkDtLA0EUhQdRMEZr2wUbm0nmzvNuKfFNJMIqlsPs5EYTNtk4syn8926IldWBw8fh8DF2CWIE4Mz4-XXGbzloLkDgCI7YAIwUXGg0x2wghJRcWSdO2VnOKyGEBVkOmKp29Zpym2NoqPgIHSX-EnIuqi3FLoViuSm6LyqqkD77ui0qCufsZBGaTBd_OWTv93dvk0c-nT08TW6mPGpRdrx0Ri_IEUacG6WCjH0Ta4PBkqxdmLsIsi5LdICxBoeASjuwwaJWpkQ1ZNeH3W1qv3eUO79e5khNEzbU7rIHi0pplNb26NU_dNXu0qZ_t6fAAGrjemp8oGJqc0608Nu0XIf040H4vUTfS_S3HrTfS_SgfgF3TmG7</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Kunze, E.</creator><creator>Klymak, J. M.</creator><creator>Lien, R.-C.</creator><creator>Ferrari, R.</creator><creator>Lee, C. M.</creator><creator>Sundermeyer, M. A.</creator><creator>Goodman, L.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150501</creationdate><title>Submesoscale Water-Mass Spectra in the Sargasso Sea</title><author>Kunze, E. ; Klymak, J. M. ; Lien, R.-C. ; Ferrari, R. ; Lee, C. M. ; Sundermeyer, M. A. ; Goodman, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9754fe7e8c8d533a2c975cb58a6e2b7ad7c12b998718cb1781834716a68435983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric forcing</topic><topic>Internal waves</topic><topic>Mass spectra</topic><topic>Meteorology</topic><topic>Salinity</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunze, E.</creatorcontrib><creatorcontrib>Klymak, J. M.</creatorcontrib><creatorcontrib>Lien, R.-C.</creatorcontrib><creatorcontrib>Ferrari, R.</creatorcontrib><creatorcontrib>Lee, C. M.</creatorcontrib><creatorcontrib>Sundermeyer, M. A.</creatorcontrib><creatorcontrib>Goodman, L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunze, E.</au><au>Klymak, J. M.</au><au>Lien, R.-C.</au><au>Ferrari, R.</au><au>Lee, C. M.</au><au>Sundermeyer, M. A.</au><au>Goodman, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Submesoscale Water-Mass Spectra in the Sargasso Sea</atitle><jtitle>Journal of physical oceanography</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>45</volume><issue>5</issue><spage>1325</spage><epage>1338</epage><pages>1325-1338</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>Submesoscale stirring contributes to the cascade of tracer variance from large to small scales. Multiple nested surveys in the summer Sargasso Sea with tow-yo and autonomous platforms captured submesoscale water-mass variability in the seasonal pycnocline at 20–60-m depths. To filter out internal waves that dominate dynamic signals on these scales, spectra for salinity anomalies on isopycnals were formed. Salinity-gradient spectra are approximately flat with slopes of −0.2 ± 0.2 over horizontal wavelengths of 0.03–10 km. While the two to three realizations presented here might be biased, more representative measurements in the literature are consistent with a nearly flat submesoscale passive tracer gradient spectrum for horizontal wavelengths in excess of 1 km. A review of mechanisms that could be responsible for a flat passive tracer gradient spectrum rules out (i) quasigeostrophic eddy stirring, (ii) atmospheric forcing through a relict submesoscale winter mixed layer structure or nocturnal mixed layer deepening, (iii) a downscale vortical-mode cascade, and (iv) horizontal diffusion because of shear dispersion of diapycnal mixing. Internal-wave horizontal strain appears to be able to explain horizontal wavenumbers of 0.1–7 cycles per kilometer (cpkm) but not the highest resolved wavenumbers (7–30 cpkm). Submesoscale subduction cannot be ruled out at these depths, though previous observations observe a flat spectrum well below subduction depths, so this seems unlikely. Primitive equation numerical modeling suggests that nonquasigeostrophic subinertial horizontal stirring can produce a flat spectrum. The last need not be limited to mode-one interior or surface Rossby wavenumbers of quasigeostrophic theory but may have a broaderband spectrum extending to smaller horizontal scales associated with frontogenesis and frontal instabilities as well as internal waves.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-14-0108.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3670
ispartof Journal of physical oceanography, 2015-05, Vol.45 (5), p.1325-1338
issn 0022-3670
1520-0485
language eng
recordid cdi_proquest_miscellaneous_1683348266
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Atmospheric forcing
Internal waves
Mass spectra
Meteorology
Salinity
Wavelengths
title Submesoscale Water-Mass Spectra in the Sargasso Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Submesoscale%20Water-Mass%20Spectra%20in%20the%20Sargasso%20Sea&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Kunze,%20E.&rft.date=2015-05-01&rft.volume=45&rft.issue=5&rft.spage=1325&rft.epage=1338&rft.pages=1325-1338&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-14-0108.1&rft_dat=%3Cproquest_cross%3E1683348266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681518457&rft_id=info:pmid/&rfr_iscdi=true