Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation

We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational neuroscience 2015-06, Vol.38 (3), p.589-600
Hauptverfasser: Shiau, LieJune, Schwalger, Tilo, Lindner, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 600
container_issue 3
container_start_page 589
container_title Journal of computational neuroscience
container_volume 38
creator Shiau, LieJune
Schwalger, Tilo
Lindner, Benjamin
description We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo , ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.
doi_str_mv 10.1007/s10827-015-0558-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1683347981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3675134591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-1aa09192e822c5cf78165903f1271d8a8ae76b95c3b665faa7e08387dc4e5c3</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oA7gxJG7coFwoCliaiT-TTOJC94SmbnUzVhclUI4-gO8tPT0aY2LiCnL5zjnhHkKeAn8JnOtXBbgRmnFQjCtlWHePbEBpyXqj5X2y4VZYpiTIM_KolGvOudHAH5IzoYztrIUN-XE5V8xliZ-RxuP1q59oSDnj5GtMcxtST0tNYe9LjYHityXNONfYuKNgl31F5ueBjTEjPaQBJ3oT656WdVv3Gcs-TQNtAL1NYTXH3Q4zttngl3qb8pg8GP1U8MndeU4-vn3z6eI9u_rw7vLi9RULnVaVgffcghVohAgqjNpAryyXIwgNg_HGo-63VgW57Xs1eq-RG2n0EDpsw3Py4uS65PRlxVLdIZaA0-RnTGtx0BspO20N_A_KwQhr-4Y-_wu9Tmue2zcapdvCFdemUXCiQk6lZBzdkuPB5-8OuDuW6U5lulamO5bpuqZ5due8bg84_Fb8aq8B4gSU9jS3pf4R_U_Xn0anrB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678715078</pqid></control><display><type>article</type><title>Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Shiau, LieJune ; Schwalger, Tilo ; Lindner, Benjamin</creator><creatorcontrib>Shiau, LieJune ; Schwalger, Tilo ; Lindner, Benjamin</creatorcontrib><description>We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo , ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.</description><identifier>ISSN: 0929-5313</identifier><identifier>EISSN: 1573-6873</identifier><identifier>DOI: 10.1007/s10827-015-0558-4</identifier><identifier>PMID: 25894991</identifier><identifier>CODEN: JCNEFR</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation, Physiological - physiology ; Algorithms ; Biomedical and Life Sciences ; Biomedicine ; Computer Simulation ; Electrophysiological Phenomena - physiology ; Human Genetics ; Models, Neurological ; Neurology ; Neurons - physiology ; Neurosciences ; Normal Distribution ; Stochastic Processes ; Synaptic Transmission - physiology ; Theory of Computation</subject><ispartof>Journal of computational neuroscience, 2015-06, Vol.38 (3), p.589-600</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-1aa09192e822c5cf78165903f1271d8a8ae76b95c3b665faa7e08387dc4e5c3</citedby><cites>FETCH-LOGICAL-c475t-1aa09192e822c5cf78165903f1271d8a8ae76b95c3b665faa7e08387dc4e5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10827-015-0558-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10827-015-0558-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25894991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiau, LieJune</creatorcontrib><creatorcontrib>Schwalger, Tilo</creatorcontrib><creatorcontrib>Lindner, Benjamin</creatorcontrib><title>Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation</title><title>Journal of computational neuroscience</title><addtitle>J Comput Neurosci</addtitle><addtitle>J Comput Neurosci</addtitle><description>We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo , ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.</description><subject>Adaptation, Physiological - physiology</subject><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Computer Simulation</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Human Genetics</subject><subject>Models, Neurological</subject><subject>Neurology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Normal Distribution</subject><subject>Stochastic Processes</subject><subject>Synaptic Transmission - physiology</subject><subject>Theory of Computation</subject><issn>0929-5313</issn><issn>1573-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkc2OFCEUhYnROO3oA7gxJG7coFwoCliaiT-TTOJC94SmbnUzVhclUI4-gO8tPT0aY2LiCnL5zjnhHkKeAn8JnOtXBbgRmnFQjCtlWHePbEBpyXqj5X2y4VZYpiTIM_KolGvOudHAH5IzoYztrIUN-XE5V8xliZ-RxuP1q59oSDnj5GtMcxtST0tNYe9LjYHityXNONfYuKNgl31F5ueBjTEjPaQBJ3oT656WdVv3Gcs-TQNtAL1NYTXH3Q4zttngl3qb8pg8GP1U8MndeU4-vn3z6eI9u_rw7vLi9RULnVaVgffcghVohAgqjNpAryyXIwgNg_HGo-63VgW57Xs1eq-RG2n0EDpsw3Py4uS65PRlxVLdIZaA0-RnTGtx0BspO20N_A_KwQhr-4Y-_wu9Tmue2zcapdvCFdemUXCiQk6lZBzdkuPB5-8OuDuW6U5lulamO5bpuqZ5due8bg84_Fb8aq8B4gSU9jS3pf4R_U_Xn0anrB8</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Shiau, LieJune</creator><creator>Schwalger, Tilo</creator><creator>Lindner, Benjamin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation</title><author>Shiau, LieJune ; Schwalger, Tilo ; Lindner, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-1aa09192e822c5cf78165903f1271d8a8ae76b95c3b665faa7e08387dc4e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Computer Simulation</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Human Genetics</topic><topic>Models, Neurological</topic><topic>Neurology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Normal Distribution</topic><topic>Stochastic Processes</topic><topic>Synaptic Transmission - physiology</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiau, LieJune</creatorcontrib><creatorcontrib>Schwalger, Tilo</creatorcontrib><creatorcontrib>Lindner, Benjamin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiau, LieJune</au><au>Schwalger, Tilo</au><au>Lindner, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation</atitle><jtitle>Journal of computational neuroscience</jtitle><stitle>J Comput Neurosci</stitle><addtitle>J Comput Neurosci</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>38</volume><issue>3</issue><spage>589</spage><epage>600</epage><pages>589-600</pages><issn>0929-5313</issn><eissn>1573-6873</eissn><coden>JCNEFR</coden><abstract>We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo , ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25894991</pmid><doi>10.1007/s10827-015-0558-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-5313
ispartof Journal of computational neuroscience, 2015-06, Vol.38 (3), p.589-600
issn 0929-5313
1573-6873
language eng
recordid cdi_proquest_miscellaneous_1683347981
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adaptation, Physiological - physiology
Algorithms
Biomedical and Life Sciences
Biomedicine
Computer Simulation
Electrophysiological Phenomena - physiology
Human Genetics
Models, Neurological
Neurology
Neurons - physiology
Neurosciences
Normal Distribution
Stochastic Processes
Synaptic Transmission - physiology
Theory of Computation
title Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interspike%20interval%20correlation%20in%20a%20stochastic%20exponential%20integrate-and-fire%20model%20with%20subthreshold%20and%20spike-triggered%20adaptation&rft.jtitle=Journal%20of%20computational%20neuroscience&rft.au=Shiau,%20LieJune&rft.date=2015-06-01&rft.volume=38&rft.issue=3&rft.spage=589&rft.epage=600&rft.pages=589-600&rft.issn=0929-5313&rft.eissn=1573-6873&rft.coden=JCNEFR&rft_id=info:doi/10.1007/s10827-015-0558-4&rft_dat=%3Cproquest_cross%3E3675134591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1678715078&rft_id=info:pmid/25894991&rfr_iscdi=true