Relationship between cadmium-induced expression of heatshock genes, inhibition of protein synthesis and cell death

Stress proteins (heat shock proteins, HSPs) have been proposed as markers for toxicity. This study has focussed on the pattern of HSP synthesis in relation to cytotoxicity and their dependence on doses of cadmium chloride. We investigated the relationship between cadmium-induced expression of heatsh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology (Amsterdam) 1995-05, Vol.99 (1), p.19-30
Hauptverfasser: Ovelgönne, J.H., Souren, J.E.M., Wiegant, F.A.C., Van Wijk, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stress proteins (heat shock proteins, HSPs) have been proposed as markers for toxicity. This study has focussed on the pattern of HSP synthesis in relation to cytotoxicity and their dependence on doses of cadmium chloride. We investigated the relationship between cadmium-induced expression of heatshock genes, inhibition of protein synthesis and cell death in a well-differentiated hepatoma cell line, Reuber H35, under exposure conditions ranging to full (> 98%) lethality. We find a non-linearity in the responses of these cells when the duration of cadmium exposure is varied. The results indicate that sublethal concentrations of cadmium can inhibit protein synthesis and also increase the synthesis of certain HSPs. The pattern of heat shock protein induction changes when exposure conditions become more severe. The most strongly inducible heat shock protein, HSP68, is, surprisingly, only synthesized under conditions which lead to severe inhibition of protein synthesis. The comparison of HSP68 mRNA levels and HSP68 synthesis showed that HSP68 mRNA is already induced under conditions where the synthesis of HSP68 protein cannot yet be traced. From these data we conclude that a differential HSP expression takes place. The translational control of HSP synthesis might be explained by the preferential translation of this mRNA under conditions of severe shut-off of general protein synthesis.
ISSN:0300-483X
1879-3185
DOI:10.1016/0300-483X(94)02990-C