Syntaxin1A-mediated Resistance and Hypersensitivity to Isoflurane in Drosophila melanogaster

Recent evidence suggests that general anesthetics activate endogenous sleep pathways, yet this mechanism cannot explain the entirety of general anesthesia. General anesthetics could disrupt synaptic release processes, as previous work in Caenorhabditis elegans and in vitro cell preparations suggeste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesiology (Philadelphia) 2015-05, Vol.122 (5), p.1060-1074
Hauptverfasser: Zalucki, Oressia H, Menon, Hareesh, Kottler, Benjamin, Faville, Richard, Day, Rebecca, Bademosi, Adekunle T, Lavidis, Nickolas, Karunanithi, Shanker, van Swinderen, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1074
container_issue 5
container_start_page 1060
container_title Anesthesiology (Philadelphia)
container_volume 122
creator Zalucki, Oressia H
Menon, Hareesh
Kottler, Benjamin
Faville, Richard
Day, Rebecca
Bademosi, Adekunle T
Lavidis, Nickolas
Karunanithi, Shanker
van Swinderen, Bruno
description Recent evidence suggests that general anesthetics activate endogenous sleep pathways, yet this mechanism cannot explain the entirety of general anesthesia. General anesthetics could disrupt synaptic release processes, as previous work in Caenorhabditis elegans and in vitro cell preparations suggested a role for the soluble NSF attachment protein receptor protein, syntaxin1A, in mediating resistance to several general anesthetics. The authors questioned whether the syntaxin1A-mediated effects found in these reductionist systems reflected a common anesthetic mechanism distinct from sleep-related processes. Using the fruit fly model, Drosophila melanogaster, the authors investigated the relevance of syntaxin1A manipulations to general anesthesia. The authors used different behavioral and electrophysiological endpoints to test the effect of syntaxin1A mutations on sensitivity to isoflurane. The authors found two syntaxin1A mutations that confer opposite general anesthesia phenotypes: syxH3-C, a 14-amino acid deletion mutant, is resistant to isoflurane (n = 40 flies), and syxKARRAA, a strain with two amino acid substitutions, is hypersensitive to the drug (n = 40 flies). Crucially, these opposing effects are maintained across different behavioral endpoints and life stages. The authors determined the isoflurane sensitivity of syxH3-C at the larval neuromuscular junction to assess effects on synaptic release. The authors find that although isoflurane slightly attenuates synaptic release in wild-type animals (n = 8), syxH3-C preserves synaptic release in the presence of isoflurane (n = 8). The study results are evidence that volatile general anesthetics target synaptic release mechanisms; in addition to first activating sleep pathways, a major consequence of these drugs may be to decrease the efficacy of neurotransmission.
doi_str_mv 10.1097/ALN.0000000000000629
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1682426839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1682426839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-35173b93d4d5c7378f265fe473f20b0451f3f68e28965c54be19e63a7e05890a3</originalsourceid><addsrcrecordid>eNpdkFtLxDAQhYMo7rr6D0T66EvXJNM06eOyXnZhUfDyJpS0nWqkN5NU7L-3squI8zLMcM7M4SPklNE5o4m8WGxu5_RvxTzZI1MmuAoZk2KfTMclhEA5n5Aj597GUQpQh2TChQQVg5yS54eh8frTNGwR1lgY7bEI7tEZ53WTY6CbIlgNHVqHjTPefBg_BL4N1q4tq97qBgPTBJe2dW33aiod1Fjppn3RzqM9Jgelrhye7PqMPF1fPS5X4ebuZr1cbMIcBPgQBJOQJVBEhcglSFXyWJQYSSg5zWgkWAllrJCrJBa5iDJkCcagJVKhEqphRs63dzvbvvfofFobl2M1JsG2dymLFY94rCAZpdFWmo-RncUy7ayptR1SRtNvrunINf3PdbSd7T702Yjp1_QDEr4Ax3JzYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682426839</pqid></control><display><type>article</type><title>Syntaxin1A-mediated Resistance and Hypersensitivity to Isoflurane in Drosophila melanogaster</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zalucki, Oressia H ; Menon, Hareesh ; Kottler, Benjamin ; Faville, Richard ; Day, Rebecca ; Bademosi, Adekunle T ; Lavidis, Nickolas ; Karunanithi, Shanker ; van Swinderen, Bruno</creator><creatorcontrib>Zalucki, Oressia H ; Menon, Hareesh ; Kottler, Benjamin ; Faville, Richard ; Day, Rebecca ; Bademosi, Adekunle T ; Lavidis, Nickolas ; Karunanithi, Shanker ; van Swinderen, Bruno</creatorcontrib><description>Recent evidence suggests that general anesthetics activate endogenous sleep pathways, yet this mechanism cannot explain the entirety of general anesthesia. General anesthetics could disrupt synaptic release processes, as previous work in Caenorhabditis elegans and in vitro cell preparations suggested a role for the soluble NSF attachment protein receptor protein, syntaxin1A, in mediating resistance to several general anesthetics. The authors questioned whether the syntaxin1A-mediated effects found in these reductionist systems reflected a common anesthetic mechanism distinct from sleep-related processes. Using the fruit fly model, Drosophila melanogaster, the authors investigated the relevance of syntaxin1A manipulations to general anesthesia. The authors used different behavioral and electrophysiological endpoints to test the effect of syntaxin1A mutations on sensitivity to isoflurane. The authors found two syntaxin1A mutations that confer opposite general anesthesia phenotypes: syxH3-C, a 14-amino acid deletion mutant, is resistant to isoflurane (n = 40 flies), and syxKARRAA, a strain with two amino acid substitutions, is hypersensitive to the drug (n = 40 flies). Crucially, these opposing effects are maintained across different behavioral endpoints and life stages. The authors determined the isoflurane sensitivity of syxH3-C at the larval neuromuscular junction to assess effects on synaptic release. The authors find that although isoflurane slightly attenuates synaptic release in wild-type animals (n = 8), syxH3-C preserves synaptic release in the presence of isoflurane (n = 8). The study results are evidence that volatile general anesthetics target synaptic release mechanisms; in addition to first activating sleep pathways, a major consequence of these drugs may be to decrease the efficacy of neurotransmission.</description><identifier>ISSN: 0003-3022</identifier><identifier>EISSN: 1528-1175</identifier><identifier>DOI: 10.1097/ALN.0000000000000629</identifier><identifier>PMID: 25738637</identifier><language>eng</language><publisher>United States</publisher><subject>Anesthetics, Inhalation - pharmacology ; Animals ; Behavior, Animal - drug effects ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - physiology ; Drug Resistance - genetics ; Hypersensitivity - genetics ; Isoflurane - pharmacology ; Larva ; Locomotion - drug effects ; Mutation ; Neuromuscular Junction - drug effects ; Neurotransmitter Agents - metabolism ; Qa-SNARE Proteins - genetics ; Qa-SNARE Proteins - physiology ; Reflex, Startle ; Sleep - drug effects</subject><ispartof>Anesthesiology (Philadelphia), 2015-05, Vol.122 (5), p.1060-1074</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-35173b93d4d5c7378f265fe473f20b0451f3f68e28965c54be19e63a7e05890a3</citedby><cites>FETCH-LOGICAL-c353t-35173b93d4d5c7378f265fe473f20b0451f3f68e28965c54be19e63a7e05890a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25738637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zalucki, Oressia H</creatorcontrib><creatorcontrib>Menon, Hareesh</creatorcontrib><creatorcontrib>Kottler, Benjamin</creatorcontrib><creatorcontrib>Faville, Richard</creatorcontrib><creatorcontrib>Day, Rebecca</creatorcontrib><creatorcontrib>Bademosi, Adekunle T</creatorcontrib><creatorcontrib>Lavidis, Nickolas</creatorcontrib><creatorcontrib>Karunanithi, Shanker</creatorcontrib><creatorcontrib>van Swinderen, Bruno</creatorcontrib><title>Syntaxin1A-mediated Resistance and Hypersensitivity to Isoflurane in Drosophila melanogaster</title><title>Anesthesiology (Philadelphia)</title><addtitle>Anesthesiology</addtitle><description>Recent evidence suggests that general anesthetics activate endogenous sleep pathways, yet this mechanism cannot explain the entirety of general anesthesia. General anesthetics could disrupt synaptic release processes, as previous work in Caenorhabditis elegans and in vitro cell preparations suggested a role for the soluble NSF attachment protein receptor protein, syntaxin1A, in mediating resistance to several general anesthetics. The authors questioned whether the syntaxin1A-mediated effects found in these reductionist systems reflected a common anesthetic mechanism distinct from sleep-related processes. Using the fruit fly model, Drosophila melanogaster, the authors investigated the relevance of syntaxin1A manipulations to general anesthesia. The authors used different behavioral and electrophysiological endpoints to test the effect of syntaxin1A mutations on sensitivity to isoflurane. The authors found two syntaxin1A mutations that confer opposite general anesthesia phenotypes: syxH3-C, a 14-amino acid deletion mutant, is resistant to isoflurane (n = 40 flies), and syxKARRAA, a strain with two amino acid substitutions, is hypersensitive to the drug (n = 40 flies). Crucially, these opposing effects are maintained across different behavioral endpoints and life stages. The authors determined the isoflurane sensitivity of syxH3-C at the larval neuromuscular junction to assess effects on synaptic release. The authors find that although isoflurane slightly attenuates synaptic release in wild-type animals (n = 8), syxH3-C preserves synaptic release in the presence of isoflurane (n = 8). The study results are evidence that volatile general anesthetics target synaptic release mechanisms; in addition to first activating sleep pathways, a major consequence of these drugs may be to decrease the efficacy of neurotransmission.</description><subject>Anesthetics, Inhalation - pharmacology</subject><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - physiology</subject><subject>Drug Resistance - genetics</subject><subject>Hypersensitivity - genetics</subject><subject>Isoflurane - pharmacology</subject><subject>Larva</subject><subject>Locomotion - drug effects</subject><subject>Mutation</subject><subject>Neuromuscular Junction - drug effects</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Qa-SNARE Proteins - genetics</subject><subject>Qa-SNARE Proteins - physiology</subject><subject>Reflex, Startle</subject><subject>Sleep - drug effects</subject><issn>0003-3022</issn><issn>1528-1175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkFtLxDAQhYMo7rr6D0T66EvXJNM06eOyXnZhUfDyJpS0nWqkN5NU7L-3squI8zLMcM7M4SPklNE5o4m8WGxu5_RvxTzZI1MmuAoZk2KfTMclhEA5n5Aj597GUQpQh2TChQQVg5yS54eh8frTNGwR1lgY7bEI7tEZ53WTY6CbIlgNHVqHjTPefBg_BL4N1q4tq97qBgPTBJe2dW33aiod1Fjppn3RzqM9Jgelrhye7PqMPF1fPS5X4ebuZr1cbMIcBPgQBJOQJVBEhcglSFXyWJQYSSg5zWgkWAllrJCrJBa5iDJkCcagJVKhEqphRs63dzvbvvfofFobl2M1JsG2dymLFY94rCAZpdFWmo-RncUy7ayptR1SRtNvrunINf3PdbSd7T702Yjp1_QDEr4Ax3JzYg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Zalucki, Oressia H</creator><creator>Menon, Hareesh</creator><creator>Kottler, Benjamin</creator><creator>Faville, Richard</creator><creator>Day, Rebecca</creator><creator>Bademosi, Adekunle T</creator><creator>Lavidis, Nickolas</creator><creator>Karunanithi, Shanker</creator><creator>van Swinderen, Bruno</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150501</creationdate><title>Syntaxin1A-mediated Resistance and Hypersensitivity to Isoflurane in Drosophila melanogaster</title><author>Zalucki, Oressia H ; Menon, Hareesh ; Kottler, Benjamin ; Faville, Richard ; Day, Rebecca ; Bademosi, Adekunle T ; Lavidis, Nickolas ; Karunanithi, Shanker ; van Swinderen, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-35173b93d4d5c7378f265fe473f20b0451f3f68e28965c54be19e63a7e05890a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anesthetics, Inhalation - pharmacology</topic><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - physiology</topic><topic>Drug Resistance - genetics</topic><topic>Hypersensitivity - genetics</topic><topic>Isoflurane - pharmacology</topic><topic>Larva</topic><topic>Locomotion - drug effects</topic><topic>Mutation</topic><topic>Neuromuscular Junction - drug effects</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Qa-SNARE Proteins - genetics</topic><topic>Qa-SNARE Proteins - physiology</topic><topic>Reflex, Startle</topic><topic>Sleep - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zalucki, Oressia H</creatorcontrib><creatorcontrib>Menon, Hareesh</creatorcontrib><creatorcontrib>Kottler, Benjamin</creatorcontrib><creatorcontrib>Faville, Richard</creatorcontrib><creatorcontrib>Day, Rebecca</creatorcontrib><creatorcontrib>Bademosi, Adekunle T</creatorcontrib><creatorcontrib>Lavidis, Nickolas</creatorcontrib><creatorcontrib>Karunanithi, Shanker</creatorcontrib><creatorcontrib>van Swinderen, Bruno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Anesthesiology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zalucki, Oressia H</au><au>Menon, Hareesh</au><au>Kottler, Benjamin</au><au>Faville, Richard</au><au>Day, Rebecca</au><au>Bademosi, Adekunle T</au><au>Lavidis, Nickolas</au><au>Karunanithi, Shanker</au><au>van Swinderen, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntaxin1A-mediated Resistance and Hypersensitivity to Isoflurane in Drosophila melanogaster</atitle><jtitle>Anesthesiology (Philadelphia)</jtitle><addtitle>Anesthesiology</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>122</volume><issue>5</issue><spage>1060</spage><epage>1074</epage><pages>1060-1074</pages><issn>0003-3022</issn><eissn>1528-1175</eissn><abstract>Recent evidence suggests that general anesthetics activate endogenous sleep pathways, yet this mechanism cannot explain the entirety of general anesthesia. General anesthetics could disrupt synaptic release processes, as previous work in Caenorhabditis elegans and in vitro cell preparations suggested a role for the soluble NSF attachment protein receptor protein, syntaxin1A, in mediating resistance to several general anesthetics. The authors questioned whether the syntaxin1A-mediated effects found in these reductionist systems reflected a common anesthetic mechanism distinct from sleep-related processes. Using the fruit fly model, Drosophila melanogaster, the authors investigated the relevance of syntaxin1A manipulations to general anesthesia. The authors used different behavioral and electrophysiological endpoints to test the effect of syntaxin1A mutations on sensitivity to isoflurane. The authors found two syntaxin1A mutations that confer opposite general anesthesia phenotypes: syxH3-C, a 14-amino acid deletion mutant, is resistant to isoflurane (n = 40 flies), and syxKARRAA, a strain with two amino acid substitutions, is hypersensitive to the drug (n = 40 flies). Crucially, these opposing effects are maintained across different behavioral endpoints and life stages. The authors determined the isoflurane sensitivity of syxH3-C at the larval neuromuscular junction to assess effects on synaptic release. The authors find that although isoflurane slightly attenuates synaptic release in wild-type animals (n = 8), syxH3-C preserves synaptic release in the presence of isoflurane (n = 8). The study results are evidence that volatile general anesthetics target synaptic release mechanisms; in addition to first activating sleep pathways, a major consequence of these drugs may be to decrease the efficacy of neurotransmission.</abstract><cop>United States</cop><pmid>25738637</pmid><doi>10.1097/ALN.0000000000000629</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-3022
ispartof Anesthesiology (Philadelphia), 2015-05, Vol.122 (5), p.1060-1074
issn 0003-3022
1528-1175
language eng
recordid cdi_proquest_miscellaneous_1682426839
source MEDLINE; Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals
subjects Anesthetics, Inhalation - pharmacology
Animals
Behavior, Animal - drug effects
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila Proteins - physiology
Drug Resistance - genetics
Hypersensitivity - genetics
Isoflurane - pharmacology
Larva
Locomotion - drug effects
Mutation
Neuromuscular Junction - drug effects
Neurotransmitter Agents - metabolism
Qa-SNARE Proteins - genetics
Qa-SNARE Proteins - physiology
Reflex, Startle
Sleep - drug effects
title Syntaxin1A-mediated Resistance and Hypersensitivity to Isoflurane in Drosophila melanogaster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntaxin1A-mediated%20Resistance%20and%20Hypersensitivity%20to%20Isoflurane%20in%20Drosophila%20melanogaster&rft.jtitle=Anesthesiology%20(Philadelphia)&rft.au=Zalucki,%20Oressia%20H&rft.date=2015-05-01&rft.volume=122&rft.issue=5&rft.spage=1060&rft.epage=1074&rft.pages=1060-1074&rft.issn=0003-3022&rft.eissn=1528-1175&rft_id=info:doi/10.1097/ALN.0000000000000629&rft_dat=%3Cproquest_cross%3E1682426839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682426839&rft_id=info:pmid/25738637&rfr_iscdi=true