Helical inner-wall texture prevents jamming in granular pipe flows

Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid fraction variations in the transport direction. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2015-06, Vol.11 (21), p.4295-435
Hauptverfasser: Verbücheln, Felix, Parteli, Eric J. R, Pöschel, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 21
container_start_page 4295
container_title Soft matter
container_volume 11
creator Verbücheln, Felix
Parteli, Eric J. R
Pöschel, Thorsten
description Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid fraction variations in the transport direction. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe. The helical texture leads to a more homogeneous mass flux along the pipe, prevents the emergence of large density waves and substantially reduces the probability of plug formation thus avoiding jamming of the particulate flow. We show that the granular mass flux Q through a pipe of diameter D with a helical texture of wavelength λ follows the equation Q = Q 0 ·{1 − B  sin[arctan(2π D / λ )]}, where Q 0 is the flow without helix, predicted from the well-known Beverloo equation. Our new expression yields, thus, a modification of the Beverloo equation with only one additional fit parameter, B , and describes the particle mass flux with the helical texture with excellent quantitative agreement with simulation results. Future application of the method proposed here has the potential to improve granular pipe flows in a broad range of processes without the need for energy input from any external source. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe.
doi_str_mv 10.1039/c5sm00760g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1682424593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1682424593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-530d8357db1160083c1451c0b689f01a0daa490babd7483a62b1317d420c4aa83</originalsourceid><addsrcrecordid>eNqF0U1Lw0AQBuBFFFurF-9KvIkQncnuJptjLdoKFQ8qeAubzaakbD7cTaz-e6Ot9aanGZiHgXmHkGOESwQaXynuSoAohMUOGWLEmB8KJna3PX0ZkAPnlgBUMAz3ySDgMTIEGJLrmTaFksYrqkpbfyWN8Vr93nZWe43Vb7pqnbeUZVlUi954CyurzkjrNUWjvdzUK3dI9nJpnD7a1BF5vr15msz8-cP0bjKe-4ox3vqcQiYoj7IUMQQQVCHjqCANRZwDSsikZDGkMs0iJqgMgxQpRhkLQDEpBR2R8_XextavnXZtUhZOaWNkpevOJRgBQn8YZ__TUAQsYDymPb1YU2Vr56zOk8YWpbQfCULyFW8y4Y_33_FOe3y62dulpc629CfPHpytgXVqO_39T9JkeW9O_jL0E4NSiR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682424593</pqid></control><display><type>article</type><title>Helical inner-wall texture prevents jamming in granular pipe flows</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Verbücheln, Felix ; Parteli, Eric J. R ; Pöschel, Thorsten</creator><creatorcontrib>Verbücheln, Felix ; Parteli, Eric J. R ; Pöschel, Thorsten</creatorcontrib><description>Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid fraction variations in the transport direction. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe. The helical texture leads to a more homogeneous mass flux along the pipe, prevents the emergence of large density waves and substantially reduces the probability of plug formation thus avoiding jamming of the particulate flow. We show that the granular mass flux Q through a pipe of diameter D with a helical texture of wavelength λ follows the equation Q = Q 0 ·{1 − B  sin[arctan(2π D / λ )]}, where Q 0 is the flow without helix, predicted from the well-known Beverloo equation. Our new expression yields, thus, a modification of the Beverloo equation with only one additional fit parameter, B , and describes the particle mass flux with the helical texture with excellent quantitative agreement with simulation results. Future application of the method proposed here has the potential to improve granular pipe flows in a broad range of processes without the need for energy input from any external source. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm00760g</identifier><identifier>PMID: 25914100</identifier><language>eng</language><publisher>England</publisher><subject>Flux ; Helical ; Mathematical analysis ; Pipe ; Pipe flow ; Surface layer ; Texture ; Transport</subject><ispartof>Soft matter, 2015-06, Vol.11 (21), p.4295-435</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-530d8357db1160083c1451c0b689f01a0daa490babd7483a62b1317d420c4aa83</citedby><cites>FETCH-LOGICAL-c445t-530d8357db1160083c1451c0b689f01a0daa490babd7483a62b1317d420c4aa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25914100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verbücheln, Felix</creatorcontrib><creatorcontrib>Parteli, Eric J. R</creatorcontrib><creatorcontrib>Pöschel, Thorsten</creatorcontrib><title>Helical inner-wall texture prevents jamming in granular pipe flows</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid fraction variations in the transport direction. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe. The helical texture leads to a more homogeneous mass flux along the pipe, prevents the emergence of large density waves and substantially reduces the probability of plug formation thus avoiding jamming of the particulate flow. We show that the granular mass flux Q through a pipe of diameter D with a helical texture of wavelength λ follows the equation Q = Q 0 ·{1 − B  sin[arctan(2π D / λ )]}, where Q 0 is the flow without helix, predicted from the well-known Beverloo equation. Our new expression yields, thus, a modification of the Beverloo equation with only one additional fit parameter, B , and describes the particle mass flux with the helical texture with excellent quantitative agreement with simulation results. Future application of the method proposed here has the potential to improve granular pipe flows in a broad range of processes without the need for energy input from any external source. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe.</description><subject>Flux</subject><subject>Helical</subject><subject>Mathematical analysis</subject><subject>Pipe</subject><subject>Pipe flow</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Transport</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0U1Lw0AQBuBFFFurF-9KvIkQncnuJptjLdoKFQ8qeAubzaakbD7cTaz-e6Ot9aanGZiHgXmHkGOESwQaXynuSoAohMUOGWLEmB8KJna3PX0ZkAPnlgBUMAz3ySDgMTIEGJLrmTaFksYrqkpbfyWN8Vr93nZWe43Vb7pqnbeUZVlUi954CyurzkjrNUWjvdzUK3dI9nJpnD7a1BF5vr15msz8-cP0bjKe-4ox3vqcQiYoj7IUMQQQVCHjqCANRZwDSsikZDGkMs0iJqgMgxQpRhkLQDEpBR2R8_XextavnXZtUhZOaWNkpevOJRgBQn8YZ__TUAQsYDymPb1YU2Vr56zOk8YWpbQfCULyFW8y4Y_33_FOe3y62dulpc629CfPHpytgXVqO_39T9JkeW9O_jL0E4NSiR0</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Verbücheln, Felix</creator><creator>Parteli, Eric J. R</creator><creator>Pöschel, Thorsten</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150607</creationdate><title>Helical inner-wall texture prevents jamming in granular pipe flows</title><author>Verbücheln, Felix ; Parteli, Eric J. R ; Pöschel, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-530d8357db1160083c1451c0b689f01a0daa490babd7483a62b1317d420c4aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Flux</topic><topic>Helical</topic><topic>Mathematical analysis</topic><topic>Pipe</topic><topic>Pipe flow</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbücheln, Felix</creatorcontrib><creatorcontrib>Parteli, Eric J. R</creatorcontrib><creatorcontrib>Pöschel, Thorsten</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbücheln, Felix</au><au>Parteli, Eric J. R</au><au>Pöschel, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helical inner-wall texture prevents jamming in granular pipe flows</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2015-06-07</date><risdate>2015</risdate><volume>11</volume><issue>21</issue><spage>4295</spage><epage>435</epage><pages>4295-435</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid fraction variations in the transport direction. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe. The helical texture leads to a more homogeneous mass flux along the pipe, prevents the emergence of large density waves and substantially reduces the probability of plug formation thus avoiding jamming of the particulate flow. We show that the granular mass flux Q through a pipe of diameter D with a helical texture of wavelength λ follows the equation Q = Q 0 ·{1 − B  sin[arctan(2π D / λ )]}, where Q 0 is the flow without helix, predicted from the well-known Beverloo equation. Our new expression yields, thus, a modification of the Beverloo equation with only one additional fit parameter, B , and describes the particle mass flux with the helical texture with excellent quantitative agreement with simulation results. Future application of the method proposed here has the potential to improve granular pipe flows in a broad range of processes without the need for energy input from any external source. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe.</abstract><cop>England</cop><pmid>25914100</pmid><doi>10.1039/c5sm00760g</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2015-06, Vol.11 (21), p.4295-435
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1682424593
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Flux
Helical
Mathematical analysis
Pipe
Pipe flow
Surface layer
Texture
Transport
title Helical inner-wall texture prevents jamming in granular pipe flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helical%20inner-wall%20texture%20prevents%20jamming%20in%20granular%20pipe%20flows&rft.jtitle=Soft%20matter&rft.au=Verb%C3%BCcheln,%20Felix&rft.date=2015-06-07&rft.volume=11&rft.issue=21&rft.spage=4295&rft.epage=435&rft.pages=4295-435&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm00760g&rft_dat=%3Cproquest_pubme%3E1682424593%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682424593&rft_id=info:pmid/25914100&rfr_iscdi=true