Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line
Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF prote...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2015-06, Vol.51 (3), p.995-1007 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1007 |
---|---|
container_issue | 3 |
container_start_page | 995 |
container_title | Molecular neurobiology |
container_volume | 51 |
creator | Vijayalakshmi, K. Ostwal, Piyush Sumitha, R. Shruthi, S. Varghese, Anu Mary Mishra, Poojashree Manohari, S. Gowri Sagar, B. C. Sathyaprabha, T. N. Nalini, A. Raju, T. R. Alladi, Phalguni Anand |
description | Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS. |
doi_str_mv | 10.1007/s12035-014-8757-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1681915729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3687567821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-80dbb1ce31cd12b8f1c0610b2d1164dfa3f2a504a8151807ccbce19e7e455fa33</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EotvCD-CCLHHhYphx4o1zrEK3rbQUaRe4Wo4zqVJl7cXeIO2_x-kWhJA4eeT3vZmxH2NvED4gQPUxoYRCCcBS6EpV4viMLVCpWiBq-ZwtQNeFqJalPmPnKT0ASIlQvWRnstQaKoULttuEkXjo-fer6xW3vnssNpJvyNH-ECIffK5_Ukx2nLnL9VY02xW_9d3kqOOf6J48RXsYgp_1u20jipJ_DrP3jqaYrxsaR74ePL1iL3o7Jnr9dF6wb6urr82NWH-5vm0u18Ip0AehoWtbdFSg61C2ukcHS4RWdojLsutt0UuroLQaFeaHONc6wpoqKpXKanHB3p_67mP4MVE6mN2QXN7CegpTMrjUWKOqZJ3Rd_-gD2GKPm_3SBVQaJCZwhPlYkgpUm_2cdjZeDQIZs7CnLIwOQszZ2GO2fP2qfPU7qj74_j9-RmQJyBlyd9T_Gv0f7v-AgoakRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681303802</pqid></control><display><type>article</type><title>Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Vijayalakshmi, K. ; Ostwal, Piyush ; Sumitha, R. ; Shruthi, S. ; Varghese, Anu Mary ; Mishra, Poojashree ; Manohari, S. Gowri ; Sagar, B. C. ; Sathyaprabha, T. N. ; Nalini, A. ; Raju, T. R. ; Alladi, Phalguni Anand</creator><creatorcontrib>Vijayalakshmi, K. ; Ostwal, Piyush ; Sumitha, R. ; Shruthi, S. ; Varghese, Anu Mary ; Mishra, Poojashree ; Manohari, S. Gowri ; Sagar, B. C. ; Sathyaprabha, T. N. ; Nalini, A. ; Raju, T. R. ; Alladi, Phalguni Anand</creatorcontrib><description>Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-014-8757-y</identifier><identifier>PMID: 24880751</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aged ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - cerebrospinal fluid ; Amyotrophic Lateral Sclerosis - metabolism ; Amyotrophic Lateral Sclerosis - pathology ; Apoptosis ; Biomarkers - cerebrospinal fluid ; Biomarkers - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Line ; Female ; Humans ; Male ; Middle Aged ; Motor Neurons - metabolism ; Motor Neurons - pathology ; Nerve Degeneration - metabolism ; Nerve Degeneration - pathology ; Neurobiology ; Neurology ; Neurosciences ; Pathogenesis ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - cerebrospinal fluid ; Vascular Endothelial Growth Factor A - pharmacology ; Vascular Endothelial Growth Factor A - physiology ; Vascular Endothelial Growth Factor Receptor-2 - physiology</subject><ispartof>Molecular neurobiology, 2015-06, Vol.51 (3), p.995-1007</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-80dbb1ce31cd12b8f1c0610b2d1164dfa3f2a504a8151807ccbce19e7e455fa33</citedby><cites>FETCH-LOGICAL-c508t-80dbb1ce31cd12b8f1c0610b2d1164dfa3f2a504a8151807ccbce19e7e455fa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-014-8757-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-014-8757-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24880751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vijayalakshmi, K.</creatorcontrib><creatorcontrib>Ostwal, Piyush</creatorcontrib><creatorcontrib>Sumitha, R.</creatorcontrib><creatorcontrib>Shruthi, S.</creatorcontrib><creatorcontrib>Varghese, Anu Mary</creatorcontrib><creatorcontrib>Mishra, Poojashree</creatorcontrib><creatorcontrib>Manohari, S. Gowri</creatorcontrib><creatorcontrib>Sagar, B. C.</creatorcontrib><creatorcontrib>Sathyaprabha, T. N.</creatorcontrib><creatorcontrib>Nalini, A.</creatorcontrib><creatorcontrib>Raju, T. R.</creatorcontrib><creatorcontrib>Alladi, Phalguni Anand</creatorcontrib><title>Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.</description><subject>Aged</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - cerebrospinal fluid</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Apoptosis</subject><subject>Biomarkers - cerebrospinal fluid</subject><subject>Biomarkers - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - pathology</subject><subject>Nerve Degeneration - metabolism</subject><subject>Nerve Degeneration - pathology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Pathogenesis</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - cerebrospinal fluid</subject><subject>Vascular Endothelial Growth Factor A - pharmacology</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - physiology</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUFv1DAQhS0EotvCD-CCLHHhYphx4o1zrEK3rbQUaRe4Wo4zqVJl7cXeIO2_x-kWhJA4eeT3vZmxH2NvED4gQPUxoYRCCcBS6EpV4viMLVCpWiBq-ZwtQNeFqJalPmPnKT0ASIlQvWRnstQaKoULttuEkXjo-fer6xW3vnssNpJvyNH-ECIffK5_Ukx2nLnL9VY02xW_9d3kqOOf6J48RXsYgp_1u20jipJ_DrP3jqaYrxsaR74ePL1iL3o7Jnr9dF6wb6urr82NWH-5vm0u18Ip0AehoWtbdFSg61C2ukcHS4RWdojLsutt0UuroLQaFeaHONc6wpoqKpXKanHB3p_67mP4MVE6mN2QXN7CegpTMrjUWKOqZJ3Rd_-gD2GKPm_3SBVQaJCZwhPlYkgpUm_2cdjZeDQIZs7CnLIwOQszZ2GO2fP2qfPU7qj74_j9-RmQJyBlyd9T_Gv0f7v-AgoakRE</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Vijayalakshmi, K.</creator><creator>Ostwal, Piyush</creator><creator>Sumitha, R.</creator><creator>Shruthi, S.</creator><creator>Varghese, Anu Mary</creator><creator>Mishra, Poojashree</creator><creator>Manohari, S. Gowri</creator><creator>Sagar, B. C.</creator><creator>Sathyaprabha, T. N.</creator><creator>Nalini, A.</creator><creator>Raju, T. R.</creator><creator>Alladi, Phalguni Anand</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line</title><author>Vijayalakshmi, K. ; Ostwal, Piyush ; Sumitha, R. ; Shruthi, S. ; Varghese, Anu Mary ; Mishra, Poojashree ; Manohari, S. Gowri ; Sagar, B. C. ; Sathyaprabha, T. N. ; Nalini, A. ; Raju, T. R. ; Alladi, Phalguni Anand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-80dbb1ce31cd12b8f1c0610b2d1164dfa3f2a504a8151807ccbce19e7e455fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aged</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - cerebrospinal fluid</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Apoptosis</topic><topic>Biomarkers - cerebrospinal fluid</topic><topic>Biomarkers - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - pathology</topic><topic>Nerve Degeneration - metabolism</topic><topic>Nerve Degeneration - pathology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Pathogenesis</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - cerebrospinal fluid</topic><topic>Vascular Endothelial Growth Factor A - pharmacology</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijayalakshmi, K.</creatorcontrib><creatorcontrib>Ostwal, Piyush</creatorcontrib><creatorcontrib>Sumitha, R.</creatorcontrib><creatorcontrib>Shruthi, S.</creatorcontrib><creatorcontrib>Varghese, Anu Mary</creatorcontrib><creatorcontrib>Mishra, Poojashree</creatorcontrib><creatorcontrib>Manohari, S. Gowri</creatorcontrib><creatorcontrib>Sagar, B. C.</creatorcontrib><creatorcontrib>Sathyaprabha, T. N.</creatorcontrib><creatorcontrib>Nalini, A.</creatorcontrib><creatorcontrib>Raju, T. R.</creatorcontrib><creatorcontrib>Alladi, Phalguni Anand</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijayalakshmi, K.</au><au>Ostwal, Piyush</au><au>Sumitha, R.</au><au>Shruthi, S.</au><au>Varghese, Anu Mary</au><au>Mishra, Poojashree</au><au>Manohari, S. Gowri</au><au>Sagar, B. C.</au><au>Sathyaprabha, T. N.</au><au>Nalini, A.</au><au>Raju, T. R.</au><au>Alladi, Phalguni Anand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>51</volume><issue>3</issue><spage>995</spage><epage>1007</epage><pages>995-1007</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>24880751</pmid><doi>10.1007/s12035-014-8757-y</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2015-06, Vol.51 (3), p.995-1007 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_proquest_miscellaneous_1681915729 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Aged Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - cerebrospinal fluid Amyotrophic Lateral Sclerosis - metabolism Amyotrophic Lateral Sclerosis - pathology Apoptosis Biomarkers - cerebrospinal fluid Biomarkers - metabolism Biomedical and Life Sciences Biomedicine Cell Biology Cell Line Female Humans Male Middle Aged Motor Neurons - metabolism Motor Neurons - pathology Nerve Degeneration - metabolism Nerve Degeneration - pathology Neurobiology Neurology Neurosciences Pathogenesis Vascular endothelial growth factor Vascular Endothelial Growth Factor A - cerebrospinal fluid Vascular Endothelial Growth Factor A - pharmacology Vascular Endothelial Growth Factor A - physiology Vascular Endothelial Growth Factor Receptor-2 - physiology |
title | Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20VEGF%20and%20VEGFR2%20Receptor%20in%20Reversal%20of%20ALS-CSF%20Induced%20Degeneration%20of%20NSC-34%20Motor%20Neuron%20Cell%20Line&rft.jtitle=Molecular%20neurobiology&rft.au=Vijayalakshmi,%20K.&rft.date=2015-06-01&rft.volume=51&rft.issue=3&rft.spage=995&rft.epage=1007&rft.pages=995-1007&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-014-8757-y&rft_dat=%3Cproquest_cross%3E3687567821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681303802&rft_id=info:pmid/24880751&rfr_iscdi=true |