Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line

Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2015-06, Vol.51 (3), p.995-1007
Hauptverfasser: Vijayalakshmi, K., Ostwal, Piyush, Sumitha, R., Shruthi, S., Varghese, Anu Mary, Mishra, Poojashree, Manohari, S. Gowri, Sagar, B. C., Sathyaprabha, T. N., Nalini, A., Raju, T. R., Alladi, Phalguni Anand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 3
container_start_page 995
container_title Molecular neurobiology
container_volume 51
creator Vijayalakshmi, K.
Ostwal, Piyush
Sumitha, R.
Shruthi, S.
Varghese, Anu Mary
Mishra, Poojashree
Manohari, S. Gowri
Sagar, B. C.
Sathyaprabha, T. N.
Nalini, A.
Raju, T. R.
Alladi, Phalguni Anand
description Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.
doi_str_mv 10.1007/s12035-014-8757-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1681915729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3687567821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-80dbb1ce31cd12b8f1c0610b2d1164dfa3f2a504a8151807ccbce19e7e455fa33</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EotvCD-CCLHHhYphx4o1zrEK3rbQUaRe4Wo4zqVJl7cXeIO2_x-kWhJA4eeT3vZmxH2NvED4gQPUxoYRCCcBS6EpV4viMLVCpWiBq-ZwtQNeFqJalPmPnKT0ASIlQvWRnstQaKoULttuEkXjo-fer6xW3vnssNpJvyNH-ECIffK5_Ukx2nLnL9VY02xW_9d3kqOOf6J48RXsYgp_1u20jipJ_DrP3jqaYrxsaR74ePL1iL3o7Jnr9dF6wb6urr82NWH-5vm0u18Ip0AehoWtbdFSg61C2ukcHS4RWdojLsutt0UuroLQaFeaHONc6wpoqKpXKanHB3p_67mP4MVE6mN2QXN7CegpTMrjUWKOqZJ3Rd_-gD2GKPm_3SBVQaJCZwhPlYkgpUm_2cdjZeDQIZs7CnLIwOQszZ2GO2fP2qfPU7qj74_j9-RmQJyBlyd9T_Gv0f7v-AgoakRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681303802</pqid></control><display><type>article</type><title>Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Vijayalakshmi, K. ; Ostwal, Piyush ; Sumitha, R. ; Shruthi, S. ; Varghese, Anu Mary ; Mishra, Poojashree ; Manohari, S. Gowri ; Sagar, B. C. ; Sathyaprabha, T. N. ; Nalini, A. ; Raju, T. R. ; Alladi, Phalguni Anand</creator><creatorcontrib>Vijayalakshmi, K. ; Ostwal, Piyush ; Sumitha, R. ; Shruthi, S. ; Varghese, Anu Mary ; Mishra, Poojashree ; Manohari, S. Gowri ; Sagar, B. C. ; Sathyaprabha, T. N. ; Nalini, A. ; Raju, T. R. ; Alladi, Phalguni Anand</creatorcontrib><description>Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-014-8757-y</identifier><identifier>PMID: 24880751</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aged ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - cerebrospinal fluid ; Amyotrophic Lateral Sclerosis - metabolism ; Amyotrophic Lateral Sclerosis - pathology ; Apoptosis ; Biomarkers - cerebrospinal fluid ; Biomarkers - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Line ; Female ; Humans ; Male ; Middle Aged ; Motor Neurons - metabolism ; Motor Neurons - pathology ; Nerve Degeneration - metabolism ; Nerve Degeneration - pathology ; Neurobiology ; Neurology ; Neurosciences ; Pathogenesis ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - cerebrospinal fluid ; Vascular Endothelial Growth Factor A - pharmacology ; Vascular Endothelial Growth Factor A - physiology ; Vascular Endothelial Growth Factor Receptor-2 - physiology</subject><ispartof>Molecular neurobiology, 2015-06, Vol.51 (3), p.995-1007</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-80dbb1ce31cd12b8f1c0610b2d1164dfa3f2a504a8151807ccbce19e7e455fa33</citedby><cites>FETCH-LOGICAL-c508t-80dbb1ce31cd12b8f1c0610b2d1164dfa3f2a504a8151807ccbce19e7e455fa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-014-8757-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-014-8757-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24880751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vijayalakshmi, K.</creatorcontrib><creatorcontrib>Ostwal, Piyush</creatorcontrib><creatorcontrib>Sumitha, R.</creatorcontrib><creatorcontrib>Shruthi, S.</creatorcontrib><creatorcontrib>Varghese, Anu Mary</creatorcontrib><creatorcontrib>Mishra, Poojashree</creatorcontrib><creatorcontrib>Manohari, S. Gowri</creatorcontrib><creatorcontrib>Sagar, B. C.</creatorcontrib><creatorcontrib>Sathyaprabha, T. N.</creatorcontrib><creatorcontrib>Nalini, A.</creatorcontrib><creatorcontrib>Raju, T. R.</creatorcontrib><creatorcontrib>Alladi, Phalguni Anand</creatorcontrib><title>Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.</description><subject>Aged</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - cerebrospinal fluid</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Apoptosis</subject><subject>Biomarkers - cerebrospinal fluid</subject><subject>Biomarkers - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Motor Neurons - metabolism</subject><subject>Motor Neurons - pathology</subject><subject>Nerve Degeneration - metabolism</subject><subject>Nerve Degeneration - pathology</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Pathogenesis</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - cerebrospinal fluid</subject><subject>Vascular Endothelial Growth Factor A - pharmacology</subject><subject>Vascular Endothelial Growth Factor A - physiology</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - physiology</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUFv1DAQhS0EotvCD-CCLHHhYphx4o1zrEK3rbQUaRe4Wo4zqVJl7cXeIO2_x-kWhJA4eeT3vZmxH2NvED4gQPUxoYRCCcBS6EpV4viMLVCpWiBq-ZwtQNeFqJalPmPnKT0ASIlQvWRnstQaKoULttuEkXjo-fer6xW3vnssNpJvyNH-ECIffK5_Ukx2nLnL9VY02xW_9d3kqOOf6J48RXsYgp_1u20jipJ_DrP3jqaYrxsaR74ePL1iL3o7Jnr9dF6wb6urr82NWH-5vm0u18Ip0AehoWtbdFSg61C2ukcHS4RWdojLsutt0UuroLQaFeaHONc6wpoqKpXKanHB3p_67mP4MVE6mN2QXN7CegpTMrjUWKOqZJ3Rd_-gD2GKPm_3SBVQaJCZwhPlYkgpUm_2cdjZeDQIZs7CnLIwOQszZ2GO2fP2qfPU7qj74_j9-RmQJyBlyd9T_Gv0f7v-AgoakRE</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Vijayalakshmi, K.</creator><creator>Ostwal, Piyush</creator><creator>Sumitha, R.</creator><creator>Shruthi, S.</creator><creator>Varghese, Anu Mary</creator><creator>Mishra, Poojashree</creator><creator>Manohari, S. Gowri</creator><creator>Sagar, B. C.</creator><creator>Sathyaprabha, T. N.</creator><creator>Nalini, A.</creator><creator>Raju, T. R.</creator><creator>Alladi, Phalguni Anand</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line</title><author>Vijayalakshmi, K. ; Ostwal, Piyush ; Sumitha, R. ; Shruthi, S. ; Varghese, Anu Mary ; Mishra, Poojashree ; Manohari, S. Gowri ; Sagar, B. C. ; Sathyaprabha, T. N. ; Nalini, A. ; Raju, T. R. ; Alladi, Phalguni Anand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-80dbb1ce31cd12b8f1c0610b2d1164dfa3f2a504a8151807ccbce19e7e455fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aged</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - cerebrospinal fluid</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Apoptosis</topic><topic>Biomarkers - cerebrospinal fluid</topic><topic>Biomarkers - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Motor Neurons - metabolism</topic><topic>Motor Neurons - pathology</topic><topic>Nerve Degeneration - metabolism</topic><topic>Nerve Degeneration - pathology</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Pathogenesis</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - cerebrospinal fluid</topic><topic>Vascular Endothelial Growth Factor A - pharmacology</topic><topic>Vascular Endothelial Growth Factor A - physiology</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijayalakshmi, K.</creatorcontrib><creatorcontrib>Ostwal, Piyush</creatorcontrib><creatorcontrib>Sumitha, R.</creatorcontrib><creatorcontrib>Shruthi, S.</creatorcontrib><creatorcontrib>Varghese, Anu Mary</creatorcontrib><creatorcontrib>Mishra, Poojashree</creatorcontrib><creatorcontrib>Manohari, S. Gowri</creatorcontrib><creatorcontrib>Sagar, B. C.</creatorcontrib><creatorcontrib>Sathyaprabha, T. N.</creatorcontrib><creatorcontrib>Nalini, A.</creatorcontrib><creatorcontrib>Raju, T. R.</creatorcontrib><creatorcontrib>Alladi, Phalguni Anand</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijayalakshmi, K.</au><au>Ostwal, Piyush</au><au>Sumitha, R.</au><au>Shruthi, S.</au><au>Varghese, Anu Mary</au><au>Mishra, Poojashree</au><au>Manohari, S. Gowri</au><au>Sagar, B. C.</au><au>Sathyaprabha, T. N.</au><au>Nalini, A.</au><au>Raju, T. R.</au><au>Alladi, Phalguni Anand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>51</volume><issue>3</issue><spage>995</spage><epage>1007</epage><pages>995-1007</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>24880751</pmid><doi>10.1007/s12035-014-8757-y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2015-06, Vol.51 (3), p.995-1007
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_1681915729
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Aged
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - cerebrospinal fluid
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - pathology
Apoptosis
Biomarkers - cerebrospinal fluid
Biomarkers - metabolism
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell Line
Female
Humans
Male
Middle Aged
Motor Neurons - metabolism
Motor Neurons - pathology
Nerve Degeneration - metabolism
Nerve Degeneration - pathology
Neurobiology
Neurology
Neurosciences
Pathogenesis
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - cerebrospinal fluid
Vascular Endothelial Growth Factor A - pharmacology
Vascular Endothelial Growth Factor A - physiology
Vascular Endothelial Growth Factor Receptor-2 - physiology
title Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20VEGF%20and%20VEGFR2%20Receptor%20in%20Reversal%20of%20ALS-CSF%20Induced%20Degeneration%20of%20NSC-34%20Motor%20Neuron%20Cell%20Line&rft.jtitle=Molecular%20neurobiology&rft.au=Vijayalakshmi,%20K.&rft.date=2015-06-01&rft.volume=51&rft.issue=3&rft.spage=995&rft.epage=1007&rft.pages=995-1007&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-014-8757-y&rft_dat=%3Cproquest_cross%3E3687567821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681303802&rft_id=info:pmid/24880751&rfr_iscdi=true