Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method

This protocol is for generating microfluidic prototypes useful for biochemical assays using a print (printer toner on transparency sheets), cut (with a CO 2 laser cutter) and laminate (with a standard office laminator) approach. We describe a technique for fabricating microfluidic devices with compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2015-06, Vol.10 (6), p.875-886
Hauptverfasser: Thompson, Brandon L, Ouyang, Yiwen, Duarte, Gabriela R M, Carrilho, Emanuel, Krauss, Shannon T, Landers, James P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 6
container_start_page 875
container_title Nature protocols
container_volume 10
creator Thompson, Brandon L
Ouyang, Yiwen
Duarte, Gabriela R M
Carrilho, Emanuel
Krauss, Shannon T
Landers, James P
description This protocol is for generating microfluidic prototypes useful for biochemical assays using a print (printer toner on transparency sheets), cut (with a CO 2 laser cutter) and laminate (with a standard office laminator) approach. We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO 2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO 2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.
doi_str_mv 10.1038/nprot.2015.051
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1681266111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A416117673</galeid><sourcerecordid>A416117673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-fc73e7e3a9b1d3b39b9c0095d72c3bc9121a9e46418b2d2cb817d97711a48eb3</originalsourceid><addsrcrecordid>eNp9kk1r3DAQhk1padK01x6LoJcW4o1G_pB1DKEfC4FCm7uQpfFGwZa2krwkv6F_uvIm_UhZig4So2fe0WjeongNdAW06s7cNvi0YhSaFW3gSXEMvKEl40I83Z_rkkEnjooXMd5QWvOq5c-LI9YIXlPRHhc_1g5vt-ii3eEpCWprDVkkfbrbWrchfiCT1cEP42yN1cTgzmqMZI772x2Ga1SGpKBc3KqATtt8q5whiowqYshq1qVToue0D49qsk4lJIPqg9UqWe_IhOnam5fFs0GNEV897CfF1ccPVxefy8svn9YX55elrgVL5aB5hRwrJXowVV-JXmhKRWM401WvBTBQAuu2hq5nhum-A24E5wCq7rCvTop397K5z-8zxiQnGzWOo3Lo5yih7YC1LQBk9O0_6I2fg8uPk6xpG8Z5S_9LZS0qamg4-0Nt1IjSusHnT9NLaXleQy7HW15lanWAystgnoN3ONgcf5Tw_lFCZhLepo2aY5Trb18PiueBxhhwkHk4kwp3Eqhc7CT3dpKLnWS2U05489DZ3E9ofuO__JOBs3sgLmPeYPir9cOSPwEnP9WL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680941572</pqid></control><display><type>article</type><title>Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Thompson, Brandon L ; Ouyang, Yiwen ; Duarte, Gabriela R M ; Carrilho, Emanuel ; Krauss, Shannon T ; Landers, James P</creator><creatorcontrib>Thompson, Brandon L ; Ouyang, Yiwen ; Duarte, Gabriela R M ; Carrilho, Emanuel ; Krauss, Shannon T ; Landers, James P</creatorcontrib><description>This protocol is for generating microfluidic prototypes useful for biochemical assays using a print (printer toner on transparency sheets), cut (with a CO 2 laser cutter) and laminate (with a standard office laminator) approach. We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO 2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO 2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2015.051</identifier><identifier>PMID: 25974096</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2196/2197 ; 639/638/11/277 ; 639/638/11/872 ; 639/638/11/877 ; Analytical Chemistry ; Biological Techniques ; Bonding agents ; Carbon dioxide ; Carbon dioxide lasers ; Colorimetry ; Computational Biology/Bioinformatics ; Devices ; Equipment costs ; Fabrication ; Flow control ; Hydrophobicity ; Innovations ; Lab-On-A-Chip Devices ; Laminates ; Laser printing ; Lasers ; Lasers, Gas ; Life Sciences ; Microarrays ; Microfluidic devices ; Microfluidics ; Multilayers ; Organic Chemistry ; Printers ; Printing ; protocol ; Rapid prototyping ; Substrates ; Transparency</subject><ispartof>Nature protocols, 2015-06, Vol.10 (6), p.875-886</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-fc73e7e3a9b1d3b39b9c0095d72c3bc9121a9e46418b2d2cb817d97711a48eb3</citedby><cites>FETCH-LOGICAL-c492t-fc73e7e3a9b1d3b39b9c0095d72c3bc9121a9e46418b2d2cb817d97711a48eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25974096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Brandon L</creatorcontrib><creatorcontrib>Ouyang, Yiwen</creatorcontrib><creatorcontrib>Duarte, Gabriela R M</creatorcontrib><creatorcontrib>Carrilho, Emanuel</creatorcontrib><creatorcontrib>Krauss, Shannon T</creatorcontrib><creatorcontrib>Landers, James P</creatorcontrib><title>Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>This protocol is for generating microfluidic prototypes useful for biochemical assays using a print (printer toner on transparency sheets), cut (with a CO 2 laser cutter) and laminate (with a standard office laminator) approach. We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO 2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO 2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.</description><subject>631/1647/2196/2197</subject><subject>639/638/11/277</subject><subject>639/638/11/872</subject><subject>639/638/11/877</subject><subject>Analytical Chemistry</subject><subject>Biological Techniques</subject><subject>Bonding agents</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Colorimetry</subject><subject>Computational Biology/Bioinformatics</subject><subject>Devices</subject><subject>Equipment costs</subject><subject>Fabrication</subject><subject>Flow control</subject><subject>Hydrophobicity</subject><subject>Innovations</subject><subject>Lab-On-A-Chip Devices</subject><subject>Laminates</subject><subject>Laser printing</subject><subject>Lasers</subject><subject>Lasers, Gas</subject><subject>Life Sciences</subject><subject>Microarrays</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Multilayers</subject><subject>Organic Chemistry</subject><subject>Printers</subject><subject>Printing</subject><subject>protocol</subject><subject>Rapid prototyping</subject><subject>Substrates</subject><subject>Transparency</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1r3DAQhk1padK01x6LoJcW4o1G_pB1DKEfC4FCm7uQpfFGwZa2krwkv6F_uvIm_UhZig4So2fe0WjeongNdAW06s7cNvi0YhSaFW3gSXEMvKEl40I83Z_rkkEnjooXMd5QWvOq5c-LI9YIXlPRHhc_1g5vt-ii3eEpCWprDVkkfbrbWrchfiCT1cEP42yN1cTgzmqMZI772x2Ga1SGpKBc3KqATtt8q5whiowqYshq1qVToue0D49qsk4lJIPqg9UqWe_IhOnam5fFs0GNEV897CfF1ccPVxefy8svn9YX55elrgVL5aB5hRwrJXowVV-JXmhKRWM401WvBTBQAuu2hq5nhum-A24E5wCq7rCvTop397K5z-8zxiQnGzWOo3Lo5yih7YC1LQBk9O0_6I2fg8uPk6xpG8Z5S_9LZS0qamg4-0Nt1IjSusHnT9NLaXleQy7HW15lanWAystgnoN3ONgcf5Tw_lFCZhLepo2aY5Trb18PiueBxhhwkHk4kwp3Eqhc7CT3dpKLnWS2U05489DZ3E9ofuO__JOBs3sgLmPeYPir9cOSPwEnP9WL</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Thompson, Brandon L</creator><creator>Ouyang, Yiwen</creator><creator>Duarte, Gabriela R M</creator><creator>Carrilho, Emanuel</creator><creator>Krauss, Shannon T</creator><creator>Landers, James P</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method</title><author>Thompson, Brandon L ; Ouyang, Yiwen ; Duarte, Gabriela R M ; Carrilho, Emanuel ; Krauss, Shannon T ; Landers, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-fc73e7e3a9b1d3b39b9c0095d72c3bc9121a9e46418b2d2cb817d97711a48eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/1647/2196/2197</topic><topic>639/638/11/277</topic><topic>639/638/11/872</topic><topic>639/638/11/877</topic><topic>Analytical Chemistry</topic><topic>Biological Techniques</topic><topic>Bonding agents</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Colorimetry</topic><topic>Computational Biology/Bioinformatics</topic><topic>Devices</topic><topic>Equipment costs</topic><topic>Fabrication</topic><topic>Flow control</topic><topic>Hydrophobicity</topic><topic>Innovations</topic><topic>Lab-On-A-Chip Devices</topic><topic>Laminates</topic><topic>Laser printing</topic><topic>Lasers</topic><topic>Lasers, Gas</topic><topic>Life Sciences</topic><topic>Microarrays</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Multilayers</topic><topic>Organic Chemistry</topic><topic>Printers</topic><topic>Printing</topic><topic>protocol</topic><topic>Rapid prototyping</topic><topic>Substrates</topic><topic>Transparency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Brandon L</creatorcontrib><creatorcontrib>Ouyang, Yiwen</creatorcontrib><creatorcontrib>Duarte, Gabriela R M</creatorcontrib><creatorcontrib>Carrilho, Emanuel</creatorcontrib><creatorcontrib>Krauss, Shannon T</creatorcontrib><creatorcontrib>Landers, James P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Brandon L</au><au>Ouyang, Yiwen</au><au>Duarte, Gabriela R M</au><au>Carrilho, Emanuel</au><au>Krauss, Shannon T</au><au>Landers, James P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>10</volume><issue>6</issue><spage>875</spage><epage>886</epage><pages>875-886</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>This protocol is for generating microfluidic prototypes useful for biochemical assays using a print (printer toner on transparency sheets), cut (with a CO 2 laser cutter) and laminate (with a standard office laminator) approach. We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO 2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO 2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25974096</pmid><doi>10.1038/nprot.2015.051</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2015-06, Vol.10 (6), p.875-886
issn 1754-2189
1750-2799
language eng
recordid cdi_proquest_miscellaneous_1681266111
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/1647/2196/2197
639/638/11/277
639/638/11/872
639/638/11/877
Analytical Chemistry
Biological Techniques
Bonding agents
Carbon dioxide
Carbon dioxide lasers
Colorimetry
Computational Biology/Bioinformatics
Devices
Equipment costs
Fabrication
Flow control
Hydrophobicity
Innovations
Lab-On-A-Chip Devices
Laminates
Laser printing
Lasers
Lasers, Gas
Life Sciences
Microarrays
Microfluidic devices
Microfluidics
Multilayers
Organic Chemistry
Printers
Printing
protocol
Rapid prototyping
Substrates
Transparency
title Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inexpensive,%20rapid%20prototyping%20of%20microfluidic%20devices%20using%20overhead%20transparencies%20and%20a%20laser%20print,%20cut%20and%20laminate%20fabrication%20method&rft.jtitle=Nature%20protocols&rft.au=Thompson,%20Brandon%20L&rft.date=2015-06-01&rft.volume=10&rft.issue=6&rft.spage=875&rft.epage=886&rft.pages=875-886&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2015.051&rft_dat=%3Cgale_proqu%3EA416117673%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680941572&rft_id=info:pmid/25974096&rft_galeid=A416117673&rfr_iscdi=true