In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy
[Display omitted] Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2015-06, Vol.487 (1-2), p.205-212 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1-2 |
container_start_page | 205 |
container_title | International journal of pharmaceutics |
container_volume | 487 |
creator | Martín-Banderas, L. Muñoz-Rubio, I. Prados, J. Álvarez-Fuentes, J. Calderón-Montaño, J.M. López-Lázaro, M. Arias, J.L. Leiva, M.C. Holgado, M.A. Fernández-Arévalo, M. |
description | [Display omitted]
Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG–CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ9-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ9-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice. |
doi_str_mv | 10.1016/j.ijpharm.2015.04.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680958841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517315003622</els_id><sourcerecordid>1680958841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2103-8a736729ed526550fdf1dcad12725e14852f574bb479a6bc416b2deda4851e043</originalsourceid><addsrcrecordid>eNqFkM9u1DAQhy0EotvCI4B85JLUf2PnhKqqlEorwQHOlmNPtF4ldrCzK_U9-lw8E17twpXTaDTfb0bzIfSBkpYS2t3u27BfdjbPLSNUtkS0RIpXaEO14g0XqnuNNoQr3Uiq-BW6LmVPCOkY5W_RFZO675nmGzQ-RXwMa07YRo_DqTkmDEc7HewaUsRpxL9f-maFNdtd8Dk5G6MdQkzT7fft4x2ONqbF5jW4CQoeU8aVcFDLDua07iDb5fkdejPaqcD7S71BP788_Lj_2my_PT7d320bxyjhjbaKd4r14CXrpCSjH6l31lOmmAQqtGSjVGIYhOptNzhBu4F58LZOKBDBb9Cn894lp18HKKuZQ3EwTTZCOhRDO016qbWgFZVn1OVUSobRLDnMNj8bSsxJsdmbi2JzUmyIMFVxzX28nDgMM_h_qb9OK_D5DEB99Bggm-ICVCU-ZHCr8Sn858QfjzGQ_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680958841</pqid></control><display><type>article</type><title>In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Martín-Banderas, L. ; Muñoz-Rubio, I. ; Prados, J. ; Álvarez-Fuentes, J. ; Calderón-Montaño, J.M. ; López-Lázaro, M. ; Arias, J.L. ; Leiva, M.C. ; Holgado, M.A. ; Fernández-Arévalo, M.</creator><creatorcontrib>Martín-Banderas, L. ; Muñoz-Rubio, I. ; Prados, J. ; Álvarez-Fuentes, J. ; Calderón-Montaño, J.M. ; López-Lázaro, M. ; Arias, J.L. ; Leiva, M.C. ; Holgado, M.A. ; Fernández-Arévalo, M.</creatorcontrib><description>[Display omitted]
Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG–CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ9-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ9-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2015.04.054</identifier><identifier>PMID: 25899283</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Antineoplastic Agents, Phytogenic - administration & dosage ; Antineoplastic Agents, Phytogenic - therapeutic use ; Blood compatibility ; Cell Line, Tumor ; Cell Survival - drug effects ; Chemistry, Pharmaceutical ; Chitosan ; Dronabinol - administration & dosage ; Dronabinol - therapeutic use ; Drug Compounding ; Drug Screening Assays, Antitumor ; Humans ; Lactic Acid ; Lung cancer ; Materials Testing ; Mice ; Mice, Inbred C57BL ; Nanoparticles ; Particle Size ; PEGylation ; PLGA ; Polyethylene Glycols ; Polyglycolic Acid ; Xenograft Model Antitumor Assays ; Δ9-Tetrahidrocannabinol</subject><ispartof>International journal of pharmaceutics, 2015-06, Vol.487 (1-2), p.205-212</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2103-8a736729ed526550fdf1dcad12725e14852f574bb479a6bc416b2deda4851e043</citedby><cites>FETCH-LOGICAL-c2103-8a736729ed526550fdf1dcad12725e14852f574bb479a6bc416b2deda4851e043</cites><orcidid>0000-0003-1447-6125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517315003622$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25899283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martín-Banderas, L.</creatorcontrib><creatorcontrib>Muñoz-Rubio, I.</creatorcontrib><creatorcontrib>Prados, J.</creatorcontrib><creatorcontrib>Álvarez-Fuentes, J.</creatorcontrib><creatorcontrib>Calderón-Montaño, J.M.</creatorcontrib><creatorcontrib>López-Lázaro, M.</creatorcontrib><creatorcontrib>Arias, J.L.</creatorcontrib><creatorcontrib>Leiva, M.C.</creatorcontrib><creatorcontrib>Holgado, M.A.</creatorcontrib><creatorcontrib>Fernández-Arévalo, M.</creatorcontrib><title>In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted]
Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG–CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ9-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ9-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.</description><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - administration & dosage</subject><subject>Antineoplastic Agents, Phytogenic - therapeutic use</subject><subject>Blood compatibility</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Chitosan</subject><subject>Dronabinol - administration & dosage</subject><subject>Dronabinol - therapeutic use</subject><subject>Drug Compounding</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Humans</subject><subject>Lactic Acid</subject><subject>Lung cancer</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>PEGylation</subject><subject>PLGA</subject><subject>Polyethylene Glycols</subject><subject>Polyglycolic Acid</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Δ9-Tetrahidrocannabinol</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9u1DAQhy0EotvCI4B85JLUf2PnhKqqlEorwQHOlmNPtF4ldrCzK_U9-lw8E17twpXTaDTfb0bzIfSBkpYS2t3u27BfdjbPLSNUtkS0RIpXaEO14g0XqnuNNoQr3Uiq-BW6LmVPCOkY5W_RFZO675nmGzQ-RXwMa07YRo_DqTkmDEc7HewaUsRpxL9f-maFNdtd8Dk5G6MdQkzT7fft4x2ONqbF5jW4CQoeU8aVcFDLDua07iDb5fkdejPaqcD7S71BP788_Lj_2my_PT7d320bxyjhjbaKd4r14CXrpCSjH6l31lOmmAQqtGSjVGIYhOptNzhBu4F58LZOKBDBb9Cn894lp18HKKuZQ3EwTTZCOhRDO016qbWgFZVn1OVUSobRLDnMNj8bSsxJsdmbi2JzUmyIMFVxzX28nDgMM_h_qb9OK_D5DEB99Bggm-ICVCU-ZHCr8Sn858QfjzGQ_Q</recordid><startdate>20150620</startdate><enddate>20150620</enddate><creator>Martín-Banderas, L.</creator><creator>Muñoz-Rubio, I.</creator><creator>Prados, J.</creator><creator>Álvarez-Fuentes, J.</creator><creator>Calderón-Montaño, J.M.</creator><creator>López-Lázaro, M.</creator><creator>Arias, J.L.</creator><creator>Leiva, M.C.</creator><creator>Holgado, M.A.</creator><creator>Fernández-Arévalo, M.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1447-6125</orcidid></search><sort><creationdate>20150620</creationdate><title>In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy</title><author>Martín-Banderas, L. ; Muñoz-Rubio, I. ; Prados, J. ; Álvarez-Fuentes, J. ; Calderón-Montaño, J.M. ; López-Lázaro, M. ; Arias, J.L. ; Leiva, M.C. ; Holgado, M.A. ; Fernández-Arévalo, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2103-8a736729ed526550fdf1dcad12725e14852f574bb479a6bc416b2deda4851e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - administration & dosage</topic><topic>Antineoplastic Agents, Phytogenic - therapeutic use</topic><topic>Blood compatibility</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Chitosan</topic><topic>Dronabinol - administration & dosage</topic><topic>Dronabinol - therapeutic use</topic><topic>Drug Compounding</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Humans</topic><topic>Lactic Acid</topic><topic>Lung cancer</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>PEGylation</topic><topic>PLGA</topic><topic>Polyethylene Glycols</topic><topic>Polyglycolic Acid</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Δ9-Tetrahidrocannabinol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Banderas, L.</creatorcontrib><creatorcontrib>Muñoz-Rubio, I.</creatorcontrib><creatorcontrib>Prados, J.</creatorcontrib><creatorcontrib>Álvarez-Fuentes, J.</creatorcontrib><creatorcontrib>Calderón-Montaño, J.M.</creatorcontrib><creatorcontrib>López-Lázaro, M.</creatorcontrib><creatorcontrib>Arias, J.L.</creatorcontrib><creatorcontrib>Leiva, M.C.</creatorcontrib><creatorcontrib>Holgado, M.A.</creatorcontrib><creatorcontrib>Fernández-Arévalo, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Banderas, L.</au><au>Muñoz-Rubio, I.</au><au>Prados, J.</au><au>Álvarez-Fuentes, J.</au><au>Calderón-Montaño, J.M.</au><au>López-Lázaro, M.</au><au>Arias, J.L.</au><au>Leiva, M.C.</au><au>Holgado, M.A.</au><au>Fernández-Arévalo, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2015-06-20</date><risdate>2015</risdate><volume>487</volume><issue>1-2</issue><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted]
Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG–CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ9-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ9-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25899283</pmid><doi>10.1016/j.ijpharm.2015.04.054</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1447-6125</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2015-06, Vol.487 (1-2), p.205-212 |
issn | 0378-5173 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1680958841 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Antineoplastic Agents, Phytogenic - administration & dosage Antineoplastic Agents, Phytogenic - therapeutic use Blood compatibility Cell Line, Tumor Cell Survival - drug effects Chemistry, Pharmaceutical Chitosan Dronabinol - administration & dosage Dronabinol - therapeutic use Drug Compounding Drug Screening Assays, Antitumor Humans Lactic Acid Lung cancer Materials Testing Mice Mice, Inbred C57BL Nanoparticles Particle Size PEGylation PLGA Polyethylene Glycols Polyglycolic Acid Xenograft Model Antitumor Assays Δ9-Tetrahidrocannabinol |
title | In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20evaluation%20of%20%CE%949-tetrahidrocannabinol/PLGA%20nanoparticles%20for%20cancer%20chemotherapy&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Mart%C3%ADn-Banderas,%20L.&rft.date=2015-06-20&rft.volume=487&rft.issue=1-2&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2015.04.054&rft_dat=%3Cproquest_cross%3E1680958841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680958841&rft_id=info:pmid/25899283&rft_els_id=S0378517315003622&rfr_iscdi=true |