In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy

[Display omitted] Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2015-06, Vol.487 (1-2), p.205-212
Hauptverfasser: Martín-Banderas, L., Muñoz-Rubio, I., Prados, J., Álvarez-Fuentes, J., Calderón-Montaño, J.M., López-Lázaro, M., Arias, J.L., Leiva, M.C., Holgado, M.A., Fernández-Arévalo, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 1-2
container_start_page 205
container_title International journal of pharmaceutics
container_volume 487
creator Martín-Banderas, L.
Muñoz-Rubio, I.
Prados, J.
Álvarez-Fuentes, J.
Calderón-Montaño, J.M.
López-Lázaro, M.
Arias, J.L.
Leiva, M.C.
Holgado, M.A.
Fernández-Arévalo, M.
description [Display omitted] Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG–CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ9-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ9-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.
doi_str_mv 10.1016/j.ijpharm.2015.04.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680958841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517315003622</els_id><sourcerecordid>1680958841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2103-8a736729ed526550fdf1dcad12725e14852f574bb479a6bc416b2deda4851e043</originalsourceid><addsrcrecordid>eNqFkM9u1DAQhy0EotvCI4B85JLUf2PnhKqqlEorwQHOlmNPtF4ldrCzK_U9-lw8E17twpXTaDTfb0bzIfSBkpYS2t3u27BfdjbPLSNUtkS0RIpXaEO14g0XqnuNNoQr3Uiq-BW6LmVPCOkY5W_RFZO675nmGzQ-RXwMa07YRo_DqTkmDEc7HewaUsRpxL9f-maFNdtd8Dk5G6MdQkzT7fft4x2ONqbF5jW4CQoeU8aVcFDLDua07iDb5fkdejPaqcD7S71BP788_Lj_2my_PT7d320bxyjhjbaKd4r14CXrpCSjH6l31lOmmAQqtGSjVGIYhOptNzhBu4F58LZOKBDBb9Cn894lp18HKKuZQ3EwTTZCOhRDO016qbWgFZVn1OVUSobRLDnMNj8bSsxJsdmbi2JzUmyIMFVxzX28nDgMM_h_qb9OK_D5DEB99Bggm-ICVCU-ZHCr8Sn858QfjzGQ_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680958841</pqid></control><display><type>article</type><title>In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Martín-Banderas, L. ; Muñoz-Rubio, I. ; Prados, J. ; Álvarez-Fuentes, J. ; Calderón-Montaño, J.M. ; López-Lázaro, M. ; Arias, J.L. ; Leiva, M.C. ; Holgado, M.A. ; Fernández-Arévalo, M.</creator><creatorcontrib>Martín-Banderas, L. ; Muñoz-Rubio, I. ; Prados, J. ; Álvarez-Fuentes, J. ; Calderón-Montaño, J.M. ; López-Lázaro, M. ; Arias, J.L. ; Leiva, M.C. ; Holgado, M.A. ; Fernández-Arévalo, M.</creatorcontrib><description>[Display omitted] Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG–CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ9-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ9-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2015.04.054</identifier><identifier>PMID: 25899283</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Antineoplastic Agents, Phytogenic - administration &amp; dosage ; Antineoplastic Agents, Phytogenic - therapeutic use ; Blood compatibility ; Cell Line, Tumor ; Cell Survival - drug effects ; Chemistry, Pharmaceutical ; Chitosan ; Dronabinol - administration &amp; dosage ; Dronabinol - therapeutic use ; Drug Compounding ; Drug Screening Assays, Antitumor ; Humans ; Lactic Acid ; Lung cancer ; Materials Testing ; Mice ; Mice, Inbred C57BL ; Nanoparticles ; Particle Size ; PEGylation ; PLGA ; Polyethylene Glycols ; Polyglycolic Acid ; Xenograft Model Antitumor Assays ; Δ9-Tetrahidrocannabinol</subject><ispartof>International journal of pharmaceutics, 2015-06, Vol.487 (1-2), p.205-212</ispartof><rights>2015</rights><rights>Copyright © 2015. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2103-8a736729ed526550fdf1dcad12725e14852f574bb479a6bc416b2deda4851e043</citedby><cites>FETCH-LOGICAL-c2103-8a736729ed526550fdf1dcad12725e14852f574bb479a6bc416b2deda4851e043</cites><orcidid>0000-0003-1447-6125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517315003622$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25899283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martín-Banderas, L.</creatorcontrib><creatorcontrib>Muñoz-Rubio, I.</creatorcontrib><creatorcontrib>Prados, J.</creatorcontrib><creatorcontrib>Álvarez-Fuentes, J.</creatorcontrib><creatorcontrib>Calderón-Montaño, J.M.</creatorcontrib><creatorcontrib>López-Lázaro, M.</creatorcontrib><creatorcontrib>Arias, J.L.</creatorcontrib><creatorcontrib>Leiva, M.C.</creatorcontrib><creatorcontrib>Holgado, M.A.</creatorcontrib><creatorcontrib>Fernández-Arévalo, M.</creatorcontrib><title>In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted] Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG–CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ9-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ9-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.</description><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - administration &amp; dosage</subject><subject>Antineoplastic Agents, Phytogenic - therapeutic use</subject><subject>Blood compatibility</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Chitosan</subject><subject>Dronabinol - administration &amp; dosage</subject><subject>Dronabinol - therapeutic use</subject><subject>Drug Compounding</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Humans</subject><subject>Lactic Acid</subject><subject>Lung cancer</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>PEGylation</subject><subject>PLGA</subject><subject>Polyethylene Glycols</subject><subject>Polyglycolic Acid</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Δ9-Tetrahidrocannabinol</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9u1DAQhy0EotvCI4B85JLUf2PnhKqqlEorwQHOlmNPtF4ldrCzK_U9-lw8E17twpXTaDTfb0bzIfSBkpYS2t3u27BfdjbPLSNUtkS0RIpXaEO14g0XqnuNNoQr3Uiq-BW6LmVPCOkY5W_RFZO675nmGzQ-RXwMa07YRo_DqTkmDEc7HewaUsRpxL9f-maFNdtd8Dk5G6MdQkzT7fft4x2ONqbF5jW4CQoeU8aVcFDLDua07iDb5fkdejPaqcD7S71BP788_Lj_2my_PT7d320bxyjhjbaKd4r14CXrpCSjH6l31lOmmAQqtGSjVGIYhOptNzhBu4F58LZOKBDBb9Cn894lp18HKKuZQ3EwTTZCOhRDO016qbWgFZVn1OVUSobRLDnMNj8bSsxJsdmbi2JzUmyIMFVxzX28nDgMM_h_qb9OK_D5DEB99Bggm-ICVCU-ZHCr8Sn858QfjzGQ_Q</recordid><startdate>20150620</startdate><enddate>20150620</enddate><creator>Martín-Banderas, L.</creator><creator>Muñoz-Rubio, I.</creator><creator>Prados, J.</creator><creator>Álvarez-Fuentes, J.</creator><creator>Calderón-Montaño, J.M.</creator><creator>López-Lázaro, M.</creator><creator>Arias, J.L.</creator><creator>Leiva, M.C.</creator><creator>Holgado, M.A.</creator><creator>Fernández-Arévalo, M.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1447-6125</orcidid></search><sort><creationdate>20150620</creationdate><title>In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy</title><author>Martín-Banderas, L. ; Muñoz-Rubio, I. ; Prados, J. ; Álvarez-Fuentes, J. ; Calderón-Montaño, J.M. ; López-Lázaro, M. ; Arias, J.L. ; Leiva, M.C. ; Holgado, M.A. ; Fernández-Arévalo, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2103-8a736729ed526550fdf1dcad12725e14852f574bb479a6bc416b2deda4851e043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - administration &amp; dosage</topic><topic>Antineoplastic Agents, Phytogenic - therapeutic use</topic><topic>Blood compatibility</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Chitosan</topic><topic>Dronabinol - administration &amp; dosage</topic><topic>Dronabinol - therapeutic use</topic><topic>Drug Compounding</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Humans</topic><topic>Lactic Acid</topic><topic>Lung cancer</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>PEGylation</topic><topic>PLGA</topic><topic>Polyethylene Glycols</topic><topic>Polyglycolic Acid</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Δ9-Tetrahidrocannabinol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Banderas, L.</creatorcontrib><creatorcontrib>Muñoz-Rubio, I.</creatorcontrib><creatorcontrib>Prados, J.</creatorcontrib><creatorcontrib>Álvarez-Fuentes, J.</creatorcontrib><creatorcontrib>Calderón-Montaño, J.M.</creatorcontrib><creatorcontrib>López-Lázaro, M.</creatorcontrib><creatorcontrib>Arias, J.L.</creatorcontrib><creatorcontrib>Leiva, M.C.</creatorcontrib><creatorcontrib>Holgado, M.A.</creatorcontrib><creatorcontrib>Fernández-Arévalo, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Banderas, L.</au><au>Muñoz-Rubio, I.</au><au>Prados, J.</au><au>Álvarez-Fuentes, J.</au><au>Calderón-Montaño, J.M.</au><au>López-Lázaro, M.</au><au>Arias, J.L.</au><au>Leiva, M.C.</au><au>Holgado, M.A.</au><au>Fernández-Arévalo, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2015-06-20</date><risdate>2015</risdate><volume>487</volume><issue>1-2</issue><spage>205</spage><epage>212</epage><pages>205-212</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ9-tetrahidrocannabinol (Δ9-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈290nm) increased upon coating with PEG, CS, and PEG–CS up to ≈590nm, ≈745nm, and ≈790nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ9-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ9-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25899283</pmid><doi>10.1016/j.ijpharm.2015.04.054</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1447-6125</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2015-06, Vol.487 (1-2), p.205-212
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_1680958841
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Antineoplastic Agents, Phytogenic - administration & dosage
Antineoplastic Agents, Phytogenic - therapeutic use
Blood compatibility
Cell Line, Tumor
Cell Survival - drug effects
Chemistry, Pharmaceutical
Chitosan
Dronabinol - administration & dosage
Dronabinol - therapeutic use
Drug Compounding
Drug Screening Assays, Antitumor
Humans
Lactic Acid
Lung cancer
Materials Testing
Mice
Mice, Inbred C57BL
Nanoparticles
Particle Size
PEGylation
PLGA
Polyethylene Glycols
Polyglycolic Acid
Xenograft Model Antitumor Assays
Δ9-Tetrahidrocannabinol
title In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20evaluation%20of%20%CE%949-tetrahidrocannabinol/PLGA%20nanoparticles%20for%20cancer%20chemotherapy&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Mart%C3%ADn-Banderas,%20L.&rft.date=2015-06-20&rft.volume=487&rft.issue=1-2&rft.spage=205&rft.epage=212&rft.pages=205-212&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2015.04.054&rft_dat=%3Cproquest_cross%3E1680958841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680958841&rft_id=info:pmid/25899283&rft_els_id=S0378517315003622&rfr_iscdi=true