Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis

A major problem in fermenting xylose in lignocellulosic substrates is the presence of glucose and mannose which inhibit xylose utilization. Previous studies showed that catabolite repression in some yeasts is associated with hexokinases and that deletion of one of these gene(s) could result in derep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2015-06, Vol.42 (6), p.889-896
Hauptverfasser: Dashtban, Mehdi, Wen, Xin, Bajwa, Paramjit K, Ho, Chi-Yip, Lee, Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue 6
container_start_page 889
container_title Journal of industrial microbiology & biotechnology
container_volume 42
creator Dashtban, Mehdi
Wen, Xin
Bajwa, Paramjit K
Ho, Chi-Yip
Lee, Hung
description A major problem in fermenting xylose in lignocellulosic substrates is the presence of glucose and mannose which inhibit xylose utilization. Previous studies showed that catabolite repression in some yeasts is associated with hexokinases and that deletion of one of these gene(s) could result in derepressed mutant strain(s). In this study, the hxk1 encoding hexokinase 1 in Scheffersomyces stipitis was disrupted. The ∆hxk1 SS6 strain retained the ability to utilize the main hexoses and pentoses commonly found in lignocellulosic hydrolysates as efficiently as the wild-type (WT) strain. SS6 also fermented the dominant sugars to ethanol; however, on xylose, the ∆hxk1 strain produced more xylitol and less ethanol than the WT. On mixed sugars, as expected the WT utilized glucose ahead of xylose and xylose utilization did not commence until all the glucose was consumed. In contrast, the ∆hxk1 mutant showed derepression in that it started to utilize xylose even when considerable glucose (about 1.72 %, w/v) remained in the medium. Similarly, mannose did not repress xylose utilization by the ∆hxk1 mutant and xylose and mannose were simultaneously utilized. The results are of interest in efforts to engineer yeast strains capable of efficiently utilizing glucose and xylose simultaneously for lignocellulosic biomass conversion.
doi_str_mv 10.1007/s10295-015-1614-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680958816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680958816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-b1bd29e899203e0e16befd2cf6c0d5ce82a4e499fb598c9d4a2fcfb51d8bf7ae3</originalsourceid><addsrcrecordid>eNp9kMFOHSEUholpU63tA7ipk3TTzVRggIFlY7U1MXFhXROGOVyxc4crZybx9ulF57ZpXLiCE77_5-Qj5IjRr4zS9gQZ5UbWlMmaKSZqs0cOmGhVLWUj35R7o9paikbuk_eId5RS2bb8HdnnUgvZUHlA7HcYYIpprFKobh9-s2oFI1QZcB4mrOJY9ZBhU2bcQQ_bISFU8xSH-Mc9Rwt17W8hBMiY1lsPWOEUN3GK-IG8DW5A-Lg7D8nN-dmv05_15dWPi9Nvl7WXQk11x7qeG9DGcNoABaY6CD33QXnaSw-aOwHCmNBJo73phePBl4H1ugutg-aQfFl6Nzndz4CTXUf0MAxuhDSjZUpTI7VmqqCfX6B3ac5j2e6ZasoKihaKLZTPCTFDsJsc1y5vLaP2yb5d7Nti3z7Zt6ZkPu2a524N_b_EX90F4AuA5WlcQf7v61daj5dQcMm6VY5ob655AShlWgtlmkfq2Jqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680392060</pqid></control><display><type>article</type><title>Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis</title><source>OUP_牛津大学出版社OA刊</source><source>MEDLINE</source><source>Springer Nature</source><creator>Dashtban, Mehdi ; Wen, Xin ; Bajwa, Paramjit K ; Ho, Chi-Yip ; Lee, Hung</creator><creatorcontrib>Dashtban, Mehdi ; Wen, Xin ; Bajwa, Paramjit K ; Ho, Chi-Yip ; Lee, Hung</creatorcontrib><description>A major problem in fermenting xylose in lignocellulosic substrates is the presence of glucose and mannose which inhibit xylose utilization. Previous studies showed that catabolite repression in some yeasts is associated with hexokinases and that deletion of one of these gene(s) could result in derepressed mutant strain(s). In this study, the hxk1 encoding hexokinase 1 in Scheffersomyces stipitis was disrupted. The ∆hxk1 SS6 strain retained the ability to utilize the main hexoses and pentoses commonly found in lignocellulosic hydrolysates as efficiently as the wild-type (WT) strain. SS6 also fermented the dominant sugars to ethanol; however, on xylose, the ∆hxk1 strain produced more xylitol and less ethanol than the WT. On mixed sugars, as expected the WT utilized glucose ahead of xylose and xylose utilization did not commence until all the glucose was consumed. In contrast, the ∆hxk1 mutant showed derepression in that it started to utilize xylose even when considerable glucose (about 1.72 %, w/v) remained in the medium. Similarly, mannose did not repress xylose utilization by the ∆hxk1 mutant and xylose and mannose were simultaneously utilized. The results are of interest in efforts to engineer yeast strains capable of efficiently utilizing glucose and xylose simultaneously for lignocellulosic biomass conversion.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-015-1614-9</identifier><identifier>PMID: 25845305</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Biochemistry ; Bioenergy/Biofuels/Biochemicals ; Bioengineering ; Bioinformatics ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Dehydrogenases ; Ethanol ; Ethanol - metabolism ; Fermentation ; Gene Deletion ; Genes ; Genes, Fungal - genetics ; Genetic Engineering ; Genetics ; Glucose ; Glucose - metabolism ; hexokinase ; Hexokinase - deficiency ; Hexokinase - genetics ; hexoses ; hydrolysates ; Inorganic Chemistry ; Life Sciences ; Lignin - chemistry ; Lignin - metabolism ; Lignocellulose ; mannose ; Mannose - metabolism ; Microbiology ; Mutagenesis ; mutants ; Mutation ; pentoses ; Saccharomycetales - enzymology ; Saccharomycetales - genetics ; Saccharomycetales - metabolism ; Scheffersomyces stipitis ; Studies ; Sugar ; xylitol ; Xylitol - biosynthesis ; xylose ; Xylose - metabolism ; Yeast ; Yeasts</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2015-06, Vol.42 (6), p.889-896</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-b1bd29e899203e0e16befd2cf6c0d5ce82a4e499fb598c9d4a2fcfb51d8bf7ae3</citedby><cites>FETCH-LOGICAL-c546t-b1bd29e899203e0e16befd2cf6c0d5ce82a4e499fb598c9d4a2fcfb51d8bf7ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-015-1614-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-015-1614-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25845305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dashtban, Mehdi</creatorcontrib><creatorcontrib>Wen, Xin</creatorcontrib><creatorcontrib>Bajwa, Paramjit K</creatorcontrib><creatorcontrib>Ho, Chi-Yip</creatorcontrib><creatorcontrib>Lee, Hung</creatorcontrib><title>Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>A major problem in fermenting xylose in lignocellulosic substrates is the presence of glucose and mannose which inhibit xylose utilization. Previous studies showed that catabolite repression in some yeasts is associated with hexokinases and that deletion of one of these gene(s) could result in derepressed mutant strain(s). In this study, the hxk1 encoding hexokinase 1 in Scheffersomyces stipitis was disrupted. The ∆hxk1 SS6 strain retained the ability to utilize the main hexoses and pentoses commonly found in lignocellulosic hydrolysates as efficiently as the wild-type (WT) strain. SS6 also fermented the dominant sugars to ethanol; however, on xylose, the ∆hxk1 strain produced more xylitol and less ethanol than the WT. On mixed sugars, as expected the WT utilized glucose ahead of xylose and xylose utilization did not commence until all the glucose was consumed. In contrast, the ∆hxk1 mutant showed derepression in that it started to utilize xylose even when considerable glucose (about 1.72 %, w/v) remained in the medium. Similarly, mannose did not repress xylose utilization by the ∆hxk1 mutant and xylose and mannose were simultaneously utilized. The results are of interest in efforts to engineer yeast strains capable of efficiently utilizing glucose and xylose simultaneously for lignocellulosic biomass conversion.</description><subject>Analysis</subject><subject>Biochemistry</subject><subject>Bioenergy/Biofuels/Biochemicals</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Dehydrogenases</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Gene Deletion</subject><subject>Genes</subject><subject>Genes, Fungal - genetics</subject><subject>Genetic Engineering</subject><subject>Genetics</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>hexokinase</subject><subject>Hexokinase - deficiency</subject><subject>Hexokinase - genetics</subject><subject>hexoses</subject><subject>hydrolysates</subject><subject>Inorganic Chemistry</subject><subject>Life Sciences</subject><subject>Lignin - chemistry</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>mannose</subject><subject>Mannose - metabolism</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>mutants</subject><subject>Mutation</subject><subject>pentoses</subject><subject>Saccharomycetales - enzymology</subject><subject>Saccharomycetales - genetics</subject><subject>Saccharomycetales - metabolism</subject><subject>Scheffersomyces stipitis</subject><subject>Studies</subject><subject>Sugar</subject><subject>xylitol</subject><subject>Xylitol - biosynthesis</subject><subject>xylose</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFOHSEUholpU63tA7ipk3TTzVRggIFlY7U1MXFhXROGOVyxc4crZybx9ulF57ZpXLiCE77_5-Qj5IjRr4zS9gQZ5UbWlMmaKSZqs0cOmGhVLWUj35R7o9paikbuk_eId5RS2bb8HdnnUgvZUHlA7HcYYIpprFKobh9-s2oFI1QZcB4mrOJY9ZBhU2bcQQ_bISFU8xSH-Mc9Rwt17W8hBMiY1lsPWOEUN3GK-IG8DW5A-Lg7D8nN-dmv05_15dWPi9Nvl7WXQk11x7qeG9DGcNoABaY6CD33QXnaSw-aOwHCmNBJo73phePBl4H1ugutg-aQfFl6Nzndz4CTXUf0MAxuhDSjZUpTI7VmqqCfX6B3ac5j2e6ZasoKihaKLZTPCTFDsJsc1y5vLaP2yb5d7Nti3z7Zt6ZkPu2a524N_b_EX90F4AuA5WlcQf7v61daj5dQcMm6VY5ob655AShlWgtlmkfq2Jqk</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Dashtban, Mehdi</creator><creator>Wen, Xin</creator><creator>Bajwa, Paramjit K</creator><creator>Ho, Chi-Yip</creator><creator>Lee, Hung</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis</title><author>Dashtban, Mehdi ; Wen, Xin ; Bajwa, Paramjit K ; Ho, Chi-Yip ; Lee, Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-b1bd29e899203e0e16befd2cf6c0d5ce82a4e499fb598c9d4a2fcfb51d8bf7ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Biochemistry</topic><topic>Bioenergy/Biofuels/Biochemicals</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Dehydrogenases</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Gene Deletion</topic><topic>Genes</topic><topic>Genes, Fungal - genetics</topic><topic>Genetic Engineering</topic><topic>Genetics</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>hexokinase</topic><topic>Hexokinase - deficiency</topic><topic>Hexokinase - genetics</topic><topic>hexoses</topic><topic>hydrolysates</topic><topic>Inorganic Chemistry</topic><topic>Life Sciences</topic><topic>Lignin - chemistry</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>mannose</topic><topic>Mannose - metabolism</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>mutants</topic><topic>Mutation</topic><topic>pentoses</topic><topic>Saccharomycetales - enzymology</topic><topic>Saccharomycetales - genetics</topic><topic>Saccharomycetales - metabolism</topic><topic>Scheffersomyces stipitis</topic><topic>Studies</topic><topic>Sugar</topic><topic>xylitol</topic><topic>Xylitol - biosynthesis</topic><topic>xylose</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dashtban, Mehdi</creatorcontrib><creatorcontrib>Wen, Xin</creatorcontrib><creatorcontrib>Bajwa, Paramjit K</creatorcontrib><creatorcontrib>Ho, Chi-Yip</creatorcontrib><creatorcontrib>Lee, Hung</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dashtban, Mehdi</au><au>Wen, Xin</au><au>Bajwa, Paramjit K</au><au>Ho, Chi-Yip</au><au>Lee, Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>42</volume><issue>6</issue><spage>889</spage><epage>896</epage><pages>889-896</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>A major problem in fermenting xylose in lignocellulosic substrates is the presence of glucose and mannose which inhibit xylose utilization. Previous studies showed that catabolite repression in some yeasts is associated with hexokinases and that deletion of one of these gene(s) could result in derepressed mutant strain(s). In this study, the hxk1 encoding hexokinase 1 in Scheffersomyces stipitis was disrupted. The ∆hxk1 SS6 strain retained the ability to utilize the main hexoses and pentoses commonly found in lignocellulosic hydrolysates as efficiently as the wild-type (WT) strain. SS6 also fermented the dominant sugars to ethanol; however, on xylose, the ∆hxk1 strain produced more xylitol and less ethanol than the WT. On mixed sugars, as expected the WT utilized glucose ahead of xylose and xylose utilization did not commence until all the glucose was consumed. In contrast, the ∆hxk1 mutant showed derepression in that it started to utilize xylose even when considerable glucose (about 1.72 %, w/v) remained in the medium. Similarly, mannose did not repress xylose utilization by the ∆hxk1 mutant and xylose and mannose were simultaneously utilized. The results are of interest in efforts to engineer yeast strains capable of efficiently utilizing glucose and xylose simultaneously for lignocellulosic biomass conversion.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25845305</pmid><doi>10.1007/s10295-015-1614-9</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2015-06, Vol.42 (6), p.889-896
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_miscellaneous_1680958816
source OUP_牛津大学出版社OA刊; MEDLINE; Springer Nature
subjects Analysis
Biochemistry
Bioenergy/Biofuels/Biochemicals
Bioengineering
Bioinformatics
Biomass
Biomedical and Life Sciences
Biotechnology
Dehydrogenases
Ethanol
Ethanol - metabolism
Fermentation
Gene Deletion
Genes
Genes, Fungal - genetics
Genetic Engineering
Genetics
Glucose
Glucose - metabolism
hexokinase
Hexokinase - deficiency
Hexokinase - genetics
hexoses
hydrolysates
Inorganic Chemistry
Life Sciences
Lignin - chemistry
Lignin - metabolism
Lignocellulose
mannose
Mannose - metabolism
Microbiology
Mutagenesis
mutants
Mutation
pentoses
Saccharomycetales - enzymology
Saccharomycetales - genetics
Saccharomycetales - metabolism
Scheffersomyces stipitis
Studies
Sugar
xylitol
Xylitol - biosynthesis
xylose
Xylose - metabolism
Yeast
Yeasts
title Deletion of hxk1 gene results in derepression of xylose utilization in Scheffersomyces stipitis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20hxk1%20gene%20results%20in%20derepression%20of%20xylose%20utilization%20in%20Scheffersomyces%20stipitis&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Dashtban,%20Mehdi&rft.date=2015-06-01&rft.volume=42&rft.issue=6&rft.spage=889&rft.epage=896&rft.pages=889-896&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-015-1614-9&rft_dat=%3Cproquest_cross%3E1680958816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680392060&rft_id=info:pmid/25845305&rfr_iscdi=true