Engineering biological systems toward a sustainable bioeconomy
The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydrauli...
Gespeichert in:
Veröffentlicht in: | Journal of industrial microbiology & biotechnology 2015-06, Vol.42 (6), p.813-838 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 838 |
---|---|
container_issue | 6 |
container_start_page | 813 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 42 |
creator | Lopes, Mateus Schreiner Garcez |
description | The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy. |
doi_str_mv | 10.1007/s10295-015-1606-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680958580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3682095551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-fe288efe56b5aadbdd714eb0c146040b3e1431635333be99992fb31f55903ddb3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoyMc2P6CXxtBLLk5Hlka2L4WwbNrAQg7tnoVkjxcvtrWRbML--2jrTSk9VJfR4XnfGR7GPnG45wD518AhKzEFjilXoNLyjF1xmasUUeCH-BcqT1EKvGTXIewAAPM8u2CXGRYSBcgr9m01bNuByLfDNrGt69y2rUyXhEMYqQ_J6F6NrxOThCmMph2M7ejIUeUG1x8-svPGdIFuTnPBNo-rX8sf6fr5-9PyYZ1WKNWYNpQVBTWEyqIxta3rnEuyUHGpQIIVxKXgSqAQwlIZX9ZYwRvEEkRdW7Fgd3Pv3ruXicKo-zZU1HVmIDcFzVUBJRZYQES__IPu3OSHeN1vSpQZj3oWjM9U5V0Inhq9921v_EFz0Ee5eparo1x9lKvLmPl8ap5sT_WfxLvNCGQzEPZHn-T_Wv2f1ts51Binzda3QW9-ZhEA4EUhcxRvwvWM5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680392155</pqid></control><display><type>article</type><title>Engineering biological systems toward a sustainable bioeconomy</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lopes, Mateus Schreiner Garcez</creator><creatorcontrib>Lopes, Mateus Schreiner Garcez</creatorcontrib><description>The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-015-1606-9</identifier><identifier>PMID: 25845304</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Biochemistry ; Bioengineering ; Bioengineering - economics ; Bioengineering - trends ; Bioinformatics ; Biological products ; Biomedical and Life Sciences ; Biotechnology ; Biotechnology industry ; Business models ; Carbon ; Carbon - economics ; carbon markets ; Catalysis ; Chemical industry ; Chemistry ; Clean technology ; Climate change ; Conservation of Natural Resources - economics ; Conservation of Natural Resources - trends ; Consumption ; Economic crisis ; Economic growth ; Economic sectors ; Economic theory ; Economics ; Energy consumption ; Energy industry ; Engineering ; Fossil fuels ; Fossil Fuels - economics ; fossils ; Gases ; GDP ; Genetic Engineering ; greenhouse gas emissions ; Greenhouse gases ; Gross Domestic Product ; Growth models ; Hydraulic fracturing ; income ; Industrial areas ; Industrial plants ; industrial symbiosis ; Industry - economics ; Industry - trends ; Inorganic Chemistry ; Internationality ; issues and policy ; Life Sciences ; Metabolism ; Microbiology ; Natural gas ; parks ; Production costs ; Review ; risk ; Studies ; sugars ; Sustainability ; Sustainable development ; sustainable technology ; Symbiosis ; Synthesis gas ; Synthetic biology ; Technological change ; Value chain</subject><ispartof>Journal of industrial microbiology & biotechnology, 2015-06, Vol.42 (6), p.813-838</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-fe288efe56b5aadbdd714eb0c146040b3e1431635333be99992fb31f55903ddb3</citedby><cites>FETCH-LOGICAL-c546t-fe288efe56b5aadbdd714eb0c146040b3e1431635333be99992fb31f55903ddb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-015-1606-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-015-1606-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25845304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, Mateus Schreiner Garcez</creatorcontrib><title>Engineering biological systems toward a sustainable bioeconomy</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.</description><subject>Analysis</subject><subject>Biochemistry</subject><subject>Bioengineering</subject><subject>Bioengineering - economics</subject><subject>Bioengineering - trends</subject><subject>Bioinformatics</subject><subject>Biological products</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Biotechnology industry</subject><subject>Business models</subject><subject>Carbon</subject><subject>Carbon - economics</subject><subject>carbon markets</subject><subject>Catalysis</subject><subject>Chemical industry</subject><subject>Chemistry</subject><subject>Clean technology</subject><subject>Climate change</subject><subject>Conservation of Natural Resources - economics</subject><subject>Conservation of Natural Resources - trends</subject><subject>Consumption</subject><subject>Economic crisis</subject><subject>Economic growth</subject><subject>Economic sectors</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Engineering</subject><subject>Fossil fuels</subject><subject>Fossil Fuels - economics</subject><subject>fossils</subject><subject>Gases</subject><subject>GDP</subject><subject>Genetic Engineering</subject><subject>greenhouse gas emissions</subject><subject>Greenhouse gases</subject><subject>Gross Domestic Product</subject><subject>Growth models</subject><subject>Hydraulic fracturing</subject><subject>income</subject><subject>Industrial areas</subject><subject>Industrial plants</subject><subject>industrial symbiosis</subject><subject>Industry - economics</subject><subject>Industry - trends</subject><subject>Inorganic Chemistry</subject><subject>Internationality</subject><subject>issues and policy</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Natural gas</subject><subject>parks</subject><subject>Production costs</subject><subject>Review</subject><subject>risk</subject><subject>Studies</subject><subject>sugars</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>sustainable technology</subject><subject>Symbiosis</subject><subject>Synthesis gas</subject><subject>Synthetic biology</subject><subject>Technological change</subject><subject>Value chain</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1r3DAQhkVoyMc2P6CXxtBLLk5Hlka2L4WwbNrAQg7tnoVkjxcvtrWRbML--2jrTSk9VJfR4XnfGR7GPnG45wD518AhKzEFjilXoNLyjF1xmasUUeCH-BcqT1EKvGTXIewAAPM8u2CXGRYSBcgr9m01bNuByLfDNrGt69y2rUyXhEMYqQ_J6F6NrxOThCmMph2M7ejIUeUG1x8-svPGdIFuTnPBNo-rX8sf6fr5-9PyYZ1WKNWYNpQVBTWEyqIxta3rnEuyUHGpQIIVxKXgSqAQwlIZX9ZYwRvEEkRdW7Fgd3Pv3ruXicKo-zZU1HVmIDcFzVUBJRZYQES__IPu3OSHeN1vSpQZj3oWjM9U5V0Inhq9921v_EFz0Ee5eparo1x9lKvLmPl8ap5sT_WfxLvNCGQzEPZHn-T_Wv2f1ts51Binzda3QW9-ZhEA4EUhcxRvwvWM5g</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Lopes, Mateus Schreiner Garcez</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Engineering biological systems toward a sustainable bioeconomy</title><author>Lopes, Mateus Schreiner Garcez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-fe288efe56b5aadbdd714eb0c146040b3e1431635333be99992fb31f55903ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Biochemistry</topic><topic>Bioengineering</topic><topic>Bioengineering - economics</topic><topic>Bioengineering - trends</topic><topic>Bioinformatics</topic><topic>Biological products</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Biotechnology industry</topic><topic>Business models</topic><topic>Carbon</topic><topic>Carbon - economics</topic><topic>carbon markets</topic><topic>Catalysis</topic><topic>Chemical industry</topic><topic>Chemistry</topic><topic>Clean technology</topic><topic>Climate change</topic><topic>Conservation of Natural Resources - economics</topic><topic>Conservation of Natural Resources - trends</topic><topic>Consumption</topic><topic>Economic crisis</topic><topic>Economic growth</topic><topic>Economic sectors</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Engineering</topic><topic>Fossil fuels</topic><topic>Fossil Fuels - economics</topic><topic>fossils</topic><topic>Gases</topic><topic>GDP</topic><topic>Genetic Engineering</topic><topic>greenhouse gas emissions</topic><topic>Greenhouse gases</topic><topic>Gross Domestic Product</topic><topic>Growth models</topic><topic>Hydraulic fracturing</topic><topic>income</topic><topic>Industrial areas</topic><topic>Industrial plants</topic><topic>industrial symbiosis</topic><topic>Industry - economics</topic><topic>Industry - trends</topic><topic>Inorganic Chemistry</topic><topic>Internationality</topic><topic>issues and policy</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Natural gas</topic><topic>parks</topic><topic>Production costs</topic><topic>Review</topic><topic>risk</topic><topic>Studies</topic><topic>sugars</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>sustainable technology</topic><topic>Symbiosis</topic><topic>Synthesis gas</topic><topic>Synthetic biology</topic><topic>Technological change</topic><topic>Value chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Mateus Schreiner Garcez</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Mateus Schreiner Garcez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering biological systems toward a sustainable bioeconomy</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>42</volume><issue>6</issue><spage>813</spage><epage>838</epage><pages>813-838</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25845304</pmid><doi>10.1007/s10295-015-1606-9</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2015-06, Vol.42 (6), p.813-838 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_1680958580 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); SpringerLink Journals - AutoHoldings |
subjects | Analysis Biochemistry Bioengineering Bioengineering - economics Bioengineering - trends Bioinformatics Biological products Biomedical and Life Sciences Biotechnology Biotechnology industry Business models Carbon Carbon - economics carbon markets Catalysis Chemical industry Chemistry Clean technology Climate change Conservation of Natural Resources - economics Conservation of Natural Resources - trends Consumption Economic crisis Economic growth Economic sectors Economic theory Economics Energy consumption Energy industry Engineering Fossil fuels Fossil Fuels - economics fossils Gases GDP Genetic Engineering greenhouse gas emissions Greenhouse gases Gross Domestic Product Growth models Hydraulic fracturing income Industrial areas Industrial plants industrial symbiosis Industry - economics Industry - trends Inorganic Chemistry Internationality issues and policy Life Sciences Metabolism Microbiology Natural gas parks Production costs Review risk Studies sugars Sustainability Sustainable development sustainable technology Symbiosis Synthesis gas Synthetic biology Technological change Value chain |
title | Engineering biological systems toward a sustainable bioeconomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20biological%20systems%20toward%20a%20sustainable%20bioeconomy&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Lopes,%20Mateus%20Schreiner%20Garcez&rft.date=2015-06-01&rft.volume=42&rft.issue=6&rft.spage=813&rft.epage=838&rft.pages=813-838&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-015-1606-9&rft_dat=%3Cproquest_cross%3E3682095551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680392155&rft_id=info:pmid/25845304&rfr_iscdi=true |