Engineering biological systems toward a sustainable bioeconomy

The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydrauli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2015-06, Vol.42 (6), p.813-838
1. Verfasser: Lopes, Mateus Schreiner Garcez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 838
container_issue 6
container_start_page 813
container_title Journal of industrial microbiology & biotechnology
container_volume 42
creator Lopes, Mateus Schreiner Garcez
description The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.
doi_str_mv 10.1007/s10295-015-1606-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680958580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3682095551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-fe288efe56b5aadbdd714eb0c146040b3e1431635333be99992fb31f55903ddb3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoyMc2P6CXxtBLLk5Hlka2L4WwbNrAQg7tnoVkjxcvtrWRbML--2jrTSk9VJfR4XnfGR7GPnG45wD518AhKzEFjilXoNLyjF1xmasUUeCH-BcqT1EKvGTXIewAAPM8u2CXGRYSBcgr9m01bNuByLfDNrGt69y2rUyXhEMYqQ_J6F6NrxOThCmMph2M7ejIUeUG1x8-svPGdIFuTnPBNo-rX8sf6fr5-9PyYZ1WKNWYNpQVBTWEyqIxta3rnEuyUHGpQIIVxKXgSqAQwlIZX9ZYwRvEEkRdW7Fgd3Pv3ruXicKo-zZU1HVmIDcFzVUBJRZYQES__IPu3OSHeN1vSpQZj3oWjM9U5V0Inhq9921v_EFz0Ee5eparo1x9lKvLmPl8ap5sT_WfxLvNCGQzEPZHn-T_Wv2f1ts51Binzda3QW9-ZhEA4EUhcxRvwvWM5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680392155</pqid></control><display><type>article</type><title>Engineering biological systems toward a sustainable bioeconomy</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lopes, Mateus Schreiner Garcez</creator><creatorcontrib>Lopes, Mateus Schreiner Garcez</creatorcontrib><description>The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-015-1606-9</identifier><identifier>PMID: 25845304</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Biochemistry ; Bioengineering ; Bioengineering - economics ; Bioengineering - trends ; Bioinformatics ; Biological products ; Biomedical and Life Sciences ; Biotechnology ; Biotechnology industry ; Business models ; Carbon ; Carbon - economics ; carbon markets ; Catalysis ; Chemical industry ; Chemistry ; Clean technology ; Climate change ; Conservation of Natural Resources - economics ; Conservation of Natural Resources - trends ; Consumption ; Economic crisis ; Economic growth ; Economic sectors ; Economic theory ; Economics ; Energy consumption ; Energy industry ; Engineering ; Fossil fuels ; Fossil Fuels - economics ; fossils ; Gases ; GDP ; Genetic Engineering ; greenhouse gas emissions ; Greenhouse gases ; Gross Domestic Product ; Growth models ; Hydraulic fracturing ; income ; Industrial areas ; Industrial plants ; industrial symbiosis ; Industry - economics ; Industry - trends ; Inorganic Chemistry ; Internationality ; issues and policy ; Life Sciences ; Metabolism ; Microbiology ; Natural gas ; parks ; Production costs ; Review ; risk ; Studies ; sugars ; Sustainability ; Sustainable development ; sustainable technology ; Symbiosis ; Synthesis gas ; Synthetic biology ; Technological change ; Value chain</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2015-06, Vol.42 (6), p.813-838</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-fe288efe56b5aadbdd714eb0c146040b3e1431635333be99992fb31f55903ddb3</citedby><cites>FETCH-LOGICAL-c546t-fe288efe56b5aadbdd714eb0c146040b3e1431635333be99992fb31f55903ddb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-015-1606-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-015-1606-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25845304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lopes, Mateus Schreiner Garcez</creatorcontrib><title>Engineering biological systems toward a sustainable bioeconomy</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.</description><subject>Analysis</subject><subject>Biochemistry</subject><subject>Bioengineering</subject><subject>Bioengineering - economics</subject><subject>Bioengineering - trends</subject><subject>Bioinformatics</subject><subject>Biological products</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Biotechnology industry</subject><subject>Business models</subject><subject>Carbon</subject><subject>Carbon - economics</subject><subject>carbon markets</subject><subject>Catalysis</subject><subject>Chemical industry</subject><subject>Chemistry</subject><subject>Clean technology</subject><subject>Climate change</subject><subject>Conservation of Natural Resources - economics</subject><subject>Conservation of Natural Resources - trends</subject><subject>Consumption</subject><subject>Economic crisis</subject><subject>Economic growth</subject><subject>Economic sectors</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Engineering</subject><subject>Fossil fuels</subject><subject>Fossil Fuels - economics</subject><subject>fossils</subject><subject>Gases</subject><subject>GDP</subject><subject>Genetic Engineering</subject><subject>greenhouse gas emissions</subject><subject>Greenhouse gases</subject><subject>Gross Domestic Product</subject><subject>Growth models</subject><subject>Hydraulic fracturing</subject><subject>income</subject><subject>Industrial areas</subject><subject>Industrial plants</subject><subject>industrial symbiosis</subject><subject>Industry - economics</subject><subject>Industry - trends</subject><subject>Inorganic Chemistry</subject><subject>Internationality</subject><subject>issues and policy</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Natural gas</subject><subject>parks</subject><subject>Production costs</subject><subject>Review</subject><subject>risk</subject><subject>Studies</subject><subject>sugars</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>sustainable technology</subject><subject>Symbiosis</subject><subject>Synthesis gas</subject><subject>Synthetic biology</subject><subject>Technological change</subject><subject>Value chain</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1r3DAQhkVoyMc2P6CXxtBLLk5Hlka2L4WwbNrAQg7tnoVkjxcvtrWRbML--2jrTSk9VJfR4XnfGR7GPnG45wD518AhKzEFjilXoNLyjF1xmasUUeCH-BcqT1EKvGTXIewAAPM8u2CXGRYSBcgr9m01bNuByLfDNrGt69y2rUyXhEMYqQ_J6F6NrxOThCmMph2M7ejIUeUG1x8-svPGdIFuTnPBNo-rX8sf6fr5-9PyYZ1WKNWYNpQVBTWEyqIxta3rnEuyUHGpQIIVxKXgSqAQwlIZX9ZYwRvEEkRdW7Fgd3Pv3ruXicKo-zZU1HVmIDcFzVUBJRZYQES__IPu3OSHeN1vSpQZj3oWjM9U5V0Inhq9921v_EFz0Ee5eparo1x9lKvLmPl8ap5sT_WfxLvNCGQzEPZHn-T_Wv2f1ts51Binzda3QW9-ZhEA4EUhcxRvwvWM5g</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Lopes, Mateus Schreiner Garcez</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150601</creationdate><title>Engineering biological systems toward a sustainable bioeconomy</title><author>Lopes, Mateus Schreiner Garcez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-fe288efe56b5aadbdd714eb0c146040b3e1431635333be99992fb31f55903ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Biochemistry</topic><topic>Bioengineering</topic><topic>Bioengineering - economics</topic><topic>Bioengineering - trends</topic><topic>Bioinformatics</topic><topic>Biological products</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Biotechnology industry</topic><topic>Business models</topic><topic>Carbon</topic><topic>Carbon - economics</topic><topic>carbon markets</topic><topic>Catalysis</topic><topic>Chemical industry</topic><topic>Chemistry</topic><topic>Clean technology</topic><topic>Climate change</topic><topic>Conservation of Natural Resources - economics</topic><topic>Conservation of Natural Resources - trends</topic><topic>Consumption</topic><topic>Economic crisis</topic><topic>Economic growth</topic><topic>Economic sectors</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Engineering</topic><topic>Fossil fuels</topic><topic>Fossil Fuels - economics</topic><topic>fossils</topic><topic>Gases</topic><topic>GDP</topic><topic>Genetic Engineering</topic><topic>greenhouse gas emissions</topic><topic>Greenhouse gases</topic><topic>Gross Domestic Product</topic><topic>Growth models</topic><topic>Hydraulic fracturing</topic><topic>income</topic><topic>Industrial areas</topic><topic>Industrial plants</topic><topic>industrial symbiosis</topic><topic>Industry - economics</topic><topic>Industry - trends</topic><topic>Inorganic Chemistry</topic><topic>Internationality</topic><topic>issues and policy</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Natural gas</topic><topic>parks</topic><topic>Production costs</topic><topic>Review</topic><topic>risk</topic><topic>Studies</topic><topic>sugars</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>sustainable technology</topic><topic>Symbiosis</topic><topic>Synthesis gas</topic><topic>Synthetic biology</topic><topic>Technological change</topic><topic>Value chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, Mateus Schreiner Garcez</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, Mateus Schreiner Garcez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering biological systems toward a sustainable bioeconomy</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>42</volume><issue>6</issue><spage>813</spage><epage>838</epage><pages>813-838</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25845304</pmid><doi>10.1007/s10295-015-1606-9</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2015-06, Vol.42 (6), p.813-838
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_miscellaneous_1680958580
source MEDLINE; Access via Oxford University Press (Open Access Collection); SpringerLink Journals - AutoHoldings
subjects Analysis
Biochemistry
Bioengineering
Bioengineering - economics
Bioengineering - trends
Bioinformatics
Biological products
Biomedical and Life Sciences
Biotechnology
Biotechnology industry
Business models
Carbon
Carbon - economics
carbon markets
Catalysis
Chemical industry
Chemistry
Clean technology
Climate change
Conservation of Natural Resources - economics
Conservation of Natural Resources - trends
Consumption
Economic crisis
Economic growth
Economic sectors
Economic theory
Economics
Energy consumption
Energy industry
Engineering
Fossil fuels
Fossil Fuels - economics
fossils
Gases
GDP
Genetic Engineering
greenhouse gas emissions
Greenhouse gases
Gross Domestic Product
Growth models
Hydraulic fracturing
income
Industrial areas
Industrial plants
industrial symbiosis
Industry - economics
Industry - trends
Inorganic Chemistry
Internationality
issues and policy
Life Sciences
Metabolism
Microbiology
Natural gas
parks
Production costs
Review
risk
Studies
sugars
Sustainability
Sustainable development
sustainable technology
Symbiosis
Synthesis gas
Synthetic biology
Technological change
Value chain
title Engineering biological systems toward a sustainable bioeconomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20biological%20systems%20toward%20a%20sustainable%20bioeconomy&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Lopes,%20Mateus%20Schreiner%20Garcez&rft.date=2015-06-01&rft.volume=42&rft.issue=6&rft.spage=813&rft.epage=838&rft.pages=813-838&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-015-1606-9&rft_dat=%3Cproquest_cross%3E3682095551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680392155&rft_id=info:pmid/25845304&rfr_iscdi=true