Physical insight toward electric field enhancement at nodular defects in optical coatings
Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explici...
Gespeichert in:
Veröffentlicht in: | Optics express 2015-04, Vol.23 (7), p.8609-8619 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8619 |
---|---|
container_issue | 7 |
container_start_page | 8609 |
container_title | Optics express |
container_volume | 23 |
creator | Cheng, Xinbin Tuniyazi, Abudusalamu Wei, Zeyong Zhang, Jinlong Ding, Tao Jiao, Hongfei Ma, Bin Li, Hongqiang Li, Tongbao Wang, Zhanshan |
description | Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics. |
doi_str_mv | 10.1364/OE.23.008609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680956606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680956606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-da2847ba6bb3e6f007ede1e389799f67ceaba243abc7a981dba087e8a7d050b63</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EoqWwMaOMDKTYceqPEaHyIVUqAwxM0dm-tEH5KLYj1H9PSgtiujvpeV_pHkIuGZ0yLvLb5Xya8SmlSlB9RMaM6jzNqZLH__YROQvhg1KWSy1PySibaaGE1mPy_rLehspCnVRtqFbrmMTuC7xLsEYbfWWTssJ6ONs1tBYbbGMCMWk719fgE4flgIUhnHSb-NNjO4hVuwrn5KSEOuDFYU7I28P89f4pXSwfn-_vFqnlmY6pg0zl0oAwhqMoKZXokCFXWmpdCmkRDGQ5B2MlaMWcgeEhVCAdnVEj-IRc73s3vvvsMcSiqYLFuoYWuz4UTCiqZ0LQHXqzR63vQvBYFhtfNeC3BaPFTmaxnBcZL_YyB_zq0NybBt0f_GuPfwNXRnDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680956606</pqid></control><display><type>article</type><title>Physical insight toward electric field enhancement at nodular defects in optical coatings</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>DOAJ开放获取期刊资源库</source><creator>Cheng, Xinbin ; Tuniyazi, Abudusalamu ; Wei, Zeyong ; Zhang, Jinlong ; Ding, Tao ; Jiao, Hongfei ; Ma, Bin ; Li, Hongqiang ; Li, Tongbao ; Wang, Zhanshan</creator><creatorcontrib>Cheng, Xinbin ; Tuniyazi, Abudusalamu ; Wei, Zeyong ; Zhang, Jinlong ; Ding, Tao ; Jiao, Hongfei ; Ma, Bin ; Li, Hongqiang ; Li, Tongbao ; Wang, Zhanshan</creatorcontrib><description>Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.23.008609</identifier><identifier>PMID: 25968699</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2015-04, Vol.23 (7), p.8609-8619</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-da2847ba6bb3e6f007ede1e389799f67ceaba243abc7a981dba087e8a7d050b63</citedby><cites>FETCH-LOGICAL-c329t-da2847ba6bb3e6f007ede1e389799f67ceaba243abc7a981dba087e8a7d050b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25968699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Xinbin</creatorcontrib><creatorcontrib>Tuniyazi, Abudusalamu</creatorcontrib><creatorcontrib>Wei, Zeyong</creatorcontrib><creatorcontrib>Zhang, Jinlong</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Jiao, Hongfei</creatorcontrib><creatorcontrib>Ma, Bin</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Li, Tongbao</creatorcontrib><creatorcontrib>Wang, Zhanshan</creatorcontrib><title>Physical insight toward electric field enhancement at nodular defects in optical coatings</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EoqWwMaOMDKTYceqPEaHyIVUqAwxM0dm-tEH5KLYj1H9PSgtiujvpeV_pHkIuGZ0yLvLb5Xya8SmlSlB9RMaM6jzNqZLH__YROQvhg1KWSy1PySibaaGE1mPy_rLehspCnVRtqFbrmMTuC7xLsEYbfWWTssJ6ONs1tBYbbGMCMWk719fgE4flgIUhnHSb-NNjO4hVuwrn5KSEOuDFYU7I28P89f4pXSwfn-_vFqnlmY6pg0zl0oAwhqMoKZXokCFXWmpdCmkRDGQ5B2MlaMWcgeEhVCAdnVEj-IRc73s3vvvsMcSiqYLFuoYWuz4UTCiqZ0LQHXqzR63vQvBYFhtfNeC3BaPFTmaxnBcZL_YyB_zq0NybBt0f_GuPfwNXRnDk</recordid><startdate>20150406</startdate><enddate>20150406</enddate><creator>Cheng, Xinbin</creator><creator>Tuniyazi, Abudusalamu</creator><creator>Wei, Zeyong</creator><creator>Zhang, Jinlong</creator><creator>Ding, Tao</creator><creator>Jiao, Hongfei</creator><creator>Ma, Bin</creator><creator>Li, Hongqiang</creator><creator>Li, Tongbao</creator><creator>Wang, Zhanshan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150406</creationdate><title>Physical insight toward electric field enhancement at nodular defects in optical coatings</title><author>Cheng, Xinbin ; Tuniyazi, Abudusalamu ; Wei, Zeyong ; Zhang, Jinlong ; Ding, Tao ; Jiao, Hongfei ; Ma, Bin ; Li, Hongqiang ; Li, Tongbao ; Wang, Zhanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-da2847ba6bb3e6f007ede1e389799f67ceaba243abc7a981dba087e8a7d050b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xinbin</creatorcontrib><creatorcontrib>Tuniyazi, Abudusalamu</creatorcontrib><creatorcontrib>Wei, Zeyong</creatorcontrib><creatorcontrib>Zhang, Jinlong</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Jiao, Hongfei</creatorcontrib><creatorcontrib>Ma, Bin</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Li, Tongbao</creatorcontrib><creatorcontrib>Wang, Zhanshan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xinbin</au><au>Tuniyazi, Abudusalamu</au><au>Wei, Zeyong</au><au>Zhang, Jinlong</au><au>Ding, Tao</au><au>Jiao, Hongfei</au><au>Ma, Bin</au><au>Li, Hongqiang</au><au>Li, Tongbao</au><au>Wang, Zhanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical insight toward electric field enhancement at nodular defects in optical coatings</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2015-04-06</date><risdate>2015</risdate><volume>23</volume><issue>7</issue><spage>8609</spage><epage>8619</epage><pages>8609-8619</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics.</abstract><cop>United States</cop><pmid>25968699</pmid><doi>10.1364/OE.23.008609</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2015-04, Vol.23 (7), p.8609-8619 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_1680956606 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; DOAJ开放获取期刊资源库 |
title | Physical insight toward electric field enhancement at nodular defects in optical coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20insight%20toward%20electric%20field%20enhancement%20at%20nodular%20defects%20in%20optical%20coatings&rft.jtitle=Optics%20express&rft.au=Cheng,%20Xinbin&rft.date=2015-04-06&rft.volume=23&rft.issue=7&rft.spage=8609&rft.epage=8619&rft.pages=8609-8619&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.23.008609&rft_dat=%3Cproquest_cross%3E1680956606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680956606&rft_id=info:pmid/25968699&rfr_iscdi=true |