Physical insight toward electric field enhancement at nodular defects in optical coatings

Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-04, Vol.23 (7), p.8609-8619
Hauptverfasser: Cheng, Xinbin, Tuniyazi, Abudusalamu, Wei, Zeyong, Zhang, Jinlong, Ding, Tao, Jiao, Hongfei, Ma, Bin, Li, Hongqiang, Li, Tongbao, Wang, Zhanshan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8619
container_issue 7
container_start_page 8609
container_title Optics express
container_volume 23
creator Cheng, Xinbin
Tuniyazi, Abudusalamu
Wei, Zeyong
Zhang, Jinlong
Ding, Tao
Jiao, Hongfei
Ma, Bin
Li, Hongqiang
Li, Tongbao
Wang, Zhanshan
description Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics.
doi_str_mv 10.1364/OE.23.008609
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680956606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680956606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-da2847ba6bb3e6f007ede1e389799f67ceaba243abc7a981dba087e8a7d050b63</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EoqWwMaOMDKTYceqPEaHyIVUqAwxM0dm-tEH5KLYj1H9PSgtiujvpeV_pHkIuGZ0yLvLb5Xya8SmlSlB9RMaM6jzNqZLH__YROQvhg1KWSy1PySibaaGE1mPy_rLehspCnVRtqFbrmMTuC7xLsEYbfWWTssJ6ONs1tBYbbGMCMWk719fgE4flgIUhnHSb-NNjO4hVuwrn5KSEOuDFYU7I28P89f4pXSwfn-_vFqnlmY6pg0zl0oAwhqMoKZXokCFXWmpdCmkRDGQ5B2MlaMWcgeEhVCAdnVEj-IRc73s3vvvsMcSiqYLFuoYWuz4UTCiqZ0LQHXqzR63vQvBYFhtfNeC3BaPFTmaxnBcZL_YyB_zq0NybBt0f_GuPfwNXRnDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680956606</pqid></control><display><type>article</type><title>Physical insight toward electric field enhancement at nodular defects in optical coatings</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>DOAJ开放获取期刊资源库</source><creator>Cheng, Xinbin ; Tuniyazi, Abudusalamu ; Wei, Zeyong ; Zhang, Jinlong ; Ding, Tao ; Jiao, Hongfei ; Ma, Bin ; Li, Hongqiang ; Li, Tongbao ; Wang, Zhanshan</creator><creatorcontrib>Cheng, Xinbin ; Tuniyazi, Abudusalamu ; Wei, Zeyong ; Zhang, Jinlong ; Ding, Tao ; Jiao, Hongfei ; Ma, Bin ; Li, Hongqiang ; Li, Tongbao ; Wang, Zhanshan</creatorcontrib><description>Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.23.008609</identifier><identifier>PMID: 25968699</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2015-04, Vol.23 (7), p.8609-8619</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-da2847ba6bb3e6f007ede1e389799f67ceaba243abc7a981dba087e8a7d050b63</citedby><cites>FETCH-LOGICAL-c329t-da2847ba6bb3e6f007ede1e389799f67ceaba243abc7a981dba087e8a7d050b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25968699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Xinbin</creatorcontrib><creatorcontrib>Tuniyazi, Abudusalamu</creatorcontrib><creatorcontrib>Wei, Zeyong</creatorcontrib><creatorcontrib>Zhang, Jinlong</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Jiao, Hongfei</creatorcontrib><creatorcontrib>Ma, Bin</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Li, Tongbao</creatorcontrib><creatorcontrib>Wang, Zhanshan</creatorcontrib><title>Physical insight toward electric field enhancement at nodular defects in optical coatings</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EoqWwMaOMDKTYceqPEaHyIVUqAwxM0dm-tEH5KLYj1H9PSgtiujvpeV_pHkIuGZ0yLvLb5Xya8SmlSlB9RMaM6jzNqZLH__YROQvhg1KWSy1PySibaaGE1mPy_rLehspCnVRtqFbrmMTuC7xLsEYbfWWTssJ6ONs1tBYbbGMCMWk719fgE4flgIUhnHSb-NNjO4hVuwrn5KSEOuDFYU7I28P89f4pXSwfn-_vFqnlmY6pg0zl0oAwhqMoKZXokCFXWmpdCmkRDGQ5B2MlaMWcgeEhVCAdnVEj-IRc73s3vvvsMcSiqYLFuoYWuz4UTCiqZ0LQHXqzR63vQvBYFhtfNeC3BaPFTmaxnBcZL_YyB_zq0NybBt0f_GuPfwNXRnDk</recordid><startdate>20150406</startdate><enddate>20150406</enddate><creator>Cheng, Xinbin</creator><creator>Tuniyazi, Abudusalamu</creator><creator>Wei, Zeyong</creator><creator>Zhang, Jinlong</creator><creator>Ding, Tao</creator><creator>Jiao, Hongfei</creator><creator>Ma, Bin</creator><creator>Li, Hongqiang</creator><creator>Li, Tongbao</creator><creator>Wang, Zhanshan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150406</creationdate><title>Physical insight toward electric field enhancement at nodular defects in optical coatings</title><author>Cheng, Xinbin ; Tuniyazi, Abudusalamu ; Wei, Zeyong ; Zhang, Jinlong ; Ding, Tao ; Jiao, Hongfei ; Ma, Bin ; Li, Hongqiang ; Li, Tongbao ; Wang, Zhanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-da2847ba6bb3e6f007ede1e389799f67ceaba243abc7a981dba087e8a7d050b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xinbin</creatorcontrib><creatorcontrib>Tuniyazi, Abudusalamu</creatorcontrib><creatorcontrib>Wei, Zeyong</creatorcontrib><creatorcontrib>Zhang, Jinlong</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Jiao, Hongfei</creatorcontrib><creatorcontrib>Ma, Bin</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Li, Tongbao</creatorcontrib><creatorcontrib>Wang, Zhanshan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xinbin</au><au>Tuniyazi, Abudusalamu</au><au>Wei, Zeyong</au><au>Zhang, Jinlong</au><au>Ding, Tao</au><au>Jiao, Hongfei</au><au>Ma, Bin</au><au>Li, Hongqiang</au><au>Li, Tongbao</au><au>Wang, Zhanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical insight toward electric field enhancement at nodular defects in optical coatings</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2015-04-06</date><risdate>2015</risdate><volume>23</volume><issue>7</issue><spage>8609</spage><epage>8619</epage><pages>8609-8619</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Although the finite-difference time-domain (FDTD) technique has been prevailingly used to calculate the electric field intensity (EFI) enhancement at nodular defects in high-reflection (HR) coatings, the physical insight as to how the nodular features contribute to the intensified EFI is not explicitly revealed yet, which in turn limits the solutions that improve the laser-induced damage threshold (LIDT) of nodules by decreasing the EFI enhancement. Here, a simplified model is proposed to describe the intensified EFI in nodules: 1) the nodule works as a microlens and its focal length can be predicted using a simple formula, 2) the portion of incident light that penetrates through the HR coating can be estimated by knowing the angular dependent transmittance (ADT) of the nodule, 3) strong EFI enhancement is created when the focal point is within the nodule and simultaneously a certain portion of light penetrates to the focal position. In the light of the proposed model, a broadband HR coating was used to reduce the EFI enhancement at the seed by a factor about 10, which leads to a 20 times increment of the LIDT. This work therefore not only deepens the physical understanding of EFI enhancement at nodules but also provides a new way to increase the LIDT of multilayer reflective optics.</abstract><cop>United States</cop><pmid>25968699</pmid><doi>10.1364/OE.23.008609</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2015-04, Vol.23 (7), p.8609-8619
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_1680956606
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; DOAJ开放获取期刊资源库
title Physical insight toward electric field enhancement at nodular defects in optical coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20insight%20toward%20electric%20field%20enhancement%20at%20nodular%20defects%20in%20optical%20coatings&rft.jtitle=Optics%20express&rft.au=Cheng,%20Xinbin&rft.date=2015-04-06&rft.volume=23&rft.issue=7&rft.spage=8609&rft.epage=8619&rft.pages=8609-8619&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.23.008609&rft_dat=%3Cproquest_cross%3E1680956606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680956606&rft_id=info:pmid/25968699&rfr_iscdi=true