Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance

DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biotechnology 2015-05, Vol.57 (5), p.475-488
Hauptverfasser: Augustine, Sruthy Maria, Ashwin Narayan, J., Syamaladevi, Divya P., Appunu, C., Chakravarthi, M., Ravichandran, V., Tuteja, Narendra, Subramonian, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 488
container_issue 5
container_start_page 475
container_title Molecular biotechnology
container_volume 57
creator Augustine, Sruthy Maria
Ashwin Narayan, J.
Syamaladevi, Divya P.
Appunu, C.
Chakravarthi, M.
Ravichandran, V.
Tuteja, Narendra
Subramonian, N.
description DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium -mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.
doi_str_mv 10.1007/s12033-015-9841-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680451694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1674960536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-d7d16a56ce85bae679fa7162cd75bed64dd2d6e80219afc5213bb9a24c853dbf3</originalsourceid><addsrcrecordid>eNqNkl9v0zAUxS0EYqPwAXhBlngZDxl2HNvJY1XGOqn8Ee2eI8e-aT0ldmYnaP10fDVc2iGEhMSTLfl3z9HxPQi9puSSEiLfR5oTxjJCeVaVBc0enqBzynmVEUb403QnkmWClPwMvYjxjpCc8oI9R2c5LyWXjJ6jHzduDN5MerTeYd_ir6Dwh89zvITOahUBFxxbN3q8nrYqaOUAX6yV1jsVph7HYbjEy30TrHmHr9xOOQ0RL6Dr8Cfom3DANzsIvY-jamxnxz1WzuDbIcB26tSj63oMEGP2DeLgXbTfAV-DS0orUCbi5D5vrB-tPoF44zsIB7OX6FmrugivTucM3X682iyW2erL9c1ivsp0IfmYGWmoUFxoKHmjQMiqVZKKXBvJGzCiMCY3Asr0Q5VqNc8pa5pK5YUuOTNNy2bo4qg7BH8_QRzr3kadcqaEfoo1FSUpOBVV8R-oLCpBOBMJffsXeuen4FKQXxStyjKtcIbokdLBxxigrYdgexX2NSX1oQj1sQh1KkJ9KEL9kGbenJSnpgfze-Jx8wnIj0BMT24L4Q_rf6r-BKxlwIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674198807</pqid></control><display><type>article</type><title>Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Augustine, Sruthy Maria ; Ashwin Narayan, J. ; Syamaladevi, Divya P. ; Appunu, C. ; Chakravarthi, M. ; Ravichandran, V. ; Tuteja, Narendra ; Subramonian, N.</creator><creatorcontrib>Augustine, Sruthy Maria ; Ashwin Narayan, J. ; Syamaladevi, Divya P. ; Appunu, C. ; Chakravarthi, M. ; Ravichandran, V. ; Tuteja, Narendra ; Subramonian, N.</creatorcontrib><description>DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium -mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.</description><identifier>ISSN: 1073-6085</identifier><identifier>EISSN: 1559-0305</identifier><identifier>DOI: 10.1007/s12033-015-9841-x</identifier><identifier>PMID: 25875731</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abiotic stress ; Agricultural biotechnology ; Biochemistry ; Biological Techniques ; Biotechnology ; Cell Biology ; Cell Membrane - chemistry ; Chemistry ; Chemistry and Materials Science ; Chlorophyll ; Cultivars ; Deoxyribonucleic acid ; DNA ; DNA Helicases - genetics ; DNA Helicases - metabolism ; Drought ; Droughts ; Gas exchange ; Gene Expression Regulation, Plant ; Human Genetics ; Moisture stress ; Nucleic acids ; Pisum sativum - enzymology ; Pisum sativum - genetics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant tolerance ; Plants, Genetically Modified - metabolism ; Protein Science ; Saccharum ; Saccharum - genetics ; Saccharum - physiology ; Salinity ; Salinity tolerance ; Soil moisture ; Stress response ; Stress, Physiological ; Sugarcane ; Temperature ; Water content</subject><ispartof>Molecular biotechnology, 2015-05, Vol.57 (5), p.475-488</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-d7d16a56ce85bae679fa7162cd75bed64dd2d6e80219afc5213bb9a24c853dbf3</citedby><cites>FETCH-LOGICAL-c475t-d7d16a56ce85bae679fa7162cd75bed64dd2d6e80219afc5213bb9a24c853dbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12033-015-9841-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12033-015-9841-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25875731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Augustine, Sruthy Maria</creatorcontrib><creatorcontrib>Ashwin Narayan, J.</creatorcontrib><creatorcontrib>Syamaladevi, Divya P.</creatorcontrib><creatorcontrib>Appunu, C.</creatorcontrib><creatorcontrib>Chakravarthi, M.</creatorcontrib><creatorcontrib>Ravichandran, V.</creatorcontrib><creatorcontrib>Tuteja, Narendra</creatorcontrib><creatorcontrib>Subramonian, N.</creatorcontrib><title>Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance</title><title>Molecular biotechnology</title><addtitle>Mol Biotechnol</addtitle><addtitle>Mol Biotechnol</addtitle><description>DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium -mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.</description><subject>Abiotic stress</subject><subject>Agricultural biotechnology</subject><subject>Biochemistry</subject><subject>Biological Techniques</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cell Membrane - chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chlorophyll</subject><subject>Cultivars</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>Drought</subject><subject>Droughts</subject><subject>Gas exchange</subject><subject>Gene Expression Regulation, Plant</subject><subject>Human Genetics</subject><subject>Moisture stress</subject><subject>Nucleic acids</subject><subject>Pisum sativum - enzymology</subject><subject>Pisum sativum - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant tolerance</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Protein Science</subject><subject>Saccharum</subject><subject>Saccharum - genetics</subject><subject>Saccharum - physiology</subject><subject>Salinity</subject><subject>Salinity tolerance</subject><subject>Soil moisture</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>Sugarcane</subject><subject>Temperature</subject><subject>Water content</subject><issn>1073-6085</issn><issn>1559-0305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl9v0zAUxS0EYqPwAXhBlngZDxl2HNvJY1XGOqn8Ee2eI8e-aT0ldmYnaP10fDVc2iGEhMSTLfl3z9HxPQi9puSSEiLfR5oTxjJCeVaVBc0enqBzynmVEUb403QnkmWClPwMvYjxjpCc8oI9R2c5LyWXjJ6jHzduDN5MerTeYd_ir6Dwh89zvITOahUBFxxbN3q8nrYqaOUAX6yV1jsVph7HYbjEy30TrHmHr9xOOQ0RL6Dr8Cfom3DANzsIvY-jamxnxz1WzuDbIcB26tSj63oMEGP2DeLgXbTfAV-DS0orUCbi5D5vrB-tPoF44zsIB7OX6FmrugivTucM3X682iyW2erL9c1ivsp0IfmYGWmoUFxoKHmjQMiqVZKKXBvJGzCiMCY3Asr0Q5VqNc8pa5pK5YUuOTNNy2bo4qg7BH8_QRzr3kadcqaEfoo1FSUpOBVV8R-oLCpBOBMJffsXeuen4FKQXxStyjKtcIbokdLBxxigrYdgexX2NSX1oQj1sQh1KkJ9KEL9kGbenJSnpgfze-Jx8wnIj0BMT24L4Q_rf6r-BKxlwIM</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Augustine, Sruthy Maria</creator><creator>Ashwin Narayan, J.</creator><creator>Syamaladevi, Divya P.</creator><creator>Appunu, C.</creator><creator>Chakravarthi, M.</creator><creator>Ravichandran, V.</creator><creator>Tuteja, Narendra</creator><creator>Subramonian, N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20150501</creationdate><title>Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance</title><author>Augustine, Sruthy Maria ; Ashwin Narayan, J. ; Syamaladevi, Divya P. ; Appunu, C. ; Chakravarthi, M. ; Ravichandran, V. ; Tuteja, Narendra ; Subramonian, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-d7d16a56ce85bae679fa7162cd75bed64dd2d6e80219afc5213bb9a24c853dbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abiotic stress</topic><topic>Agricultural biotechnology</topic><topic>Biochemistry</topic><topic>Biological Techniques</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cell Membrane - chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chlorophyll</topic><topic>Cultivars</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>Drought</topic><topic>Droughts</topic><topic>Gas exchange</topic><topic>Gene Expression Regulation, Plant</topic><topic>Human Genetics</topic><topic>Moisture stress</topic><topic>Nucleic acids</topic><topic>Pisum sativum - enzymology</topic><topic>Pisum sativum - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant tolerance</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Protein Science</topic><topic>Saccharum</topic><topic>Saccharum - genetics</topic><topic>Saccharum - physiology</topic><topic>Salinity</topic><topic>Salinity tolerance</topic><topic>Soil moisture</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>Sugarcane</topic><topic>Temperature</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Augustine, Sruthy Maria</creatorcontrib><creatorcontrib>Ashwin Narayan, J.</creatorcontrib><creatorcontrib>Syamaladevi, Divya P.</creatorcontrib><creatorcontrib>Appunu, C.</creatorcontrib><creatorcontrib>Chakravarthi, M.</creatorcontrib><creatorcontrib>Ravichandran, V.</creatorcontrib><creatorcontrib>Tuteja, Narendra</creatorcontrib><creatorcontrib>Subramonian, N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Molecular biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Augustine, Sruthy Maria</au><au>Ashwin Narayan, J.</au><au>Syamaladevi, Divya P.</au><au>Appunu, C.</au><au>Chakravarthi, M.</au><au>Ravichandran, V.</au><au>Tuteja, Narendra</au><au>Subramonian, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance</atitle><jtitle>Molecular biotechnology</jtitle><stitle>Mol Biotechnol</stitle><addtitle>Mol Biotechnol</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>57</volume><issue>5</issue><spage>475</spage><epage>488</epage><pages>475-488</pages><issn>1073-6085</issn><eissn>1559-0305</eissn><abstract>DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium -mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25875731</pmid><doi>10.1007/s12033-015-9841-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-6085
ispartof Molecular biotechnology, 2015-05, Vol.57 (5), p.475-488
issn 1073-6085
1559-0305
language eng
recordid cdi_proquest_miscellaneous_1680451694
source MEDLINE; Springer Online Journals Complete
subjects Abiotic stress
Agricultural biotechnology
Biochemistry
Biological Techniques
Biotechnology
Cell Biology
Cell Membrane - chemistry
Chemistry
Chemistry and Materials Science
Chlorophyll
Cultivars
Deoxyribonucleic acid
DNA
DNA Helicases - genetics
DNA Helicases - metabolism
Drought
Droughts
Gas exchange
Gene Expression Regulation, Plant
Human Genetics
Moisture stress
Nucleic acids
Pisum sativum - enzymology
Pisum sativum - genetics
Plant Proteins - genetics
Plant Proteins - metabolism
Plant tolerance
Plants, Genetically Modified - metabolism
Protein Science
Saccharum
Saccharum - genetics
Saccharum - physiology
Salinity
Salinity tolerance
Soil moisture
Stress response
Stress, Physiological
Sugarcane
Temperature
Water content
title Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability and Upregulation of Stress-Responsive Genes Leads to Abiotic Stress Tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20of%20Pea%20DNA%20Helicase%2045%20into%20Sugarcane%20(Saccharum%20spp.%20Hybrid)%20Enhances%20Cell%20Membrane%20Thermostability%20and%20Upregulation%20of%20Stress-Responsive%20Genes%20Leads%20to%20Abiotic%20Stress%20Tolerance&rft.jtitle=Molecular%20biotechnology&rft.au=Augustine,%20Sruthy%20Maria&rft.date=2015-05-01&rft.volume=57&rft.issue=5&rft.spage=475&rft.epage=488&rft.pages=475-488&rft.issn=1073-6085&rft.eissn=1559-0305&rft_id=info:doi/10.1007/s12033-015-9841-x&rft_dat=%3Cproquest_cross%3E1674960536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674198807&rft_id=info:pmid/25875731&rfr_iscdi=true