Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host
Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal r...
Gespeichert in:
Veröffentlicht in: | The Journal of agricultural science 2015-05, Vol.153 (4), p.602-614 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 4 |
container_start_page | 602 |
container_title | The Journal of agricultural science |
container_volume | 153 |
creator | LIU, Z. LI, Y. WANG, J. HE, X. TIAN, C. |
description | Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal rice (Oryza sativa) under low-temperature stress. The results demonstrated that low temperature might accelerate the biosynthesis of strigolactone in mycorrhizal rice roots by triggering the expression of genes for the synthesis of strigolactone, which acted as a host stress response signal. In addition, AMF prompted the host tricarboxylic acid (TCA) cycle by enhancing pyruvate metabolism, up-regulating the expression of genes of the TCA cycle under low-temperature stress and affecting the electron transport chain. The alternative oxidase pathway might be the main electron transport pathway in non-mycorrhizal rice under stress, while the cytochrome c oxidase (COX) pathway might be the predominant pathway in arbuscular mycorrhizal symbiosis. Mycorrhizal rice also had higher adenosine triphosphate production to maintain the natural status of respiration under stress conditions, which resulted in improved root growth status and alleviated low-temperature stress. |
doi_str_mv | 10.1017/S0021859614000434 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680448300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0021859614000434</cupid><sourcerecordid>1680448300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-c6abce5e271e1e933c2d8606472dd351b354d04e238086bccce29e4e0c30e3863</originalsourceid><addsrcrecordid>eNp1kUFv1TAMgCMEEo_BD-BEJC5cOpwmTRNuaMBAmsRh7FylqbuXqW2Kk2p6_AJ-Nnl6O0wgLrZkf_5syYy9FnAuQLTvrwFqYRqrhQIAJdUTthNK26op8SnbHdvVsf-cvUjprjAtWLNjvz-FcUTCJXPCtAZyOcSFz5hdH6eQZt5jvkcspYOPRPvwy03cLQNf4lI9rlHwyLdlQOJTvK8yzisW20bIUy7u9IE77unAx0h8j9PKR4ozz3vk-5jyS_ZsdFPCVw_5jN18-fzj4mt19f3y28XHq8oraHPltes9Nli3AgVaKX09GA1atfUwyEb0slEDKKylAaN77z3WFhWCl4DSaHnG3p28K8WfG6bczSF5nCa3YNxSJ7QBpYwEKOjbv9C7uNFSritUWwuobWsLJU6Up5gS4ditFGZHh05Ad_xN989vysyb08zoYuduKaTu5roGoQGEbawRhZAPVjf3FIZbfLT8v94_onib0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672102979</pqid></control><display><type>article</type><title>Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host</title><source>Cambridge Journals</source><creator>LIU, Z. ; LI, Y. ; WANG, J. ; HE, X. ; TIAN, C.</creator><creatorcontrib>LIU, Z. ; LI, Y. ; WANG, J. ; HE, X. ; TIAN, C.</creatorcontrib><description>Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal rice (Oryza sativa) under low-temperature stress. The results demonstrated that low temperature might accelerate the biosynthesis of strigolactone in mycorrhizal rice roots by triggering the expression of genes for the synthesis of strigolactone, which acted as a host stress response signal. In addition, AMF prompted the host tricarboxylic acid (TCA) cycle by enhancing pyruvate metabolism, up-regulating the expression of genes of the TCA cycle under low-temperature stress and affecting the electron transport chain. The alternative oxidase pathway might be the main electron transport pathway in non-mycorrhizal rice under stress, while the cytochrome c oxidase (COX) pathway might be the predominant pathway in arbuscular mycorrhizal symbiosis. Mycorrhizal rice also had higher adenosine triphosphate production to maintain the natural status of respiration under stress conditions, which resulted in improved root growth status and alleviated low-temperature stress.</description><identifier>ISSN: 0021-8596</identifier><identifier>ISSN: 1469-5146</identifier><identifier>EISSN: 1469-5146</identifier><identifier>DOI: 10.1017/S0021859614000434</identifier><identifier>CODEN: JASIAB</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Abiotic stress ; adenosine triphosphate ; ATP ; Biosynthesis ; cell respiration ; cold stress ; Crops and Soils Research Papers ; cytochrome-c oxidase ; electron transfer ; electron transport chain ; Environmental factors ; Fungi ; gene expression ; Low temperature ; Metabolism ; mycorrhizal fungi ; Oryza sativa ; Plant growth ; pyruvic acid ; Respiration ; Rice ; root growth ; roots ; Soil microorganisms ; stress response ; Symbiosis ; temperature ; tricarboxylic acid cycle ; vesicular arbuscular mycorrhizae</subject><ispartof>The Journal of agricultural science, 2015-05, Vol.153 (4), p.602-614</ispartof><rights>Copyright © Cambridge University Press 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-c6abce5e271e1e933c2d8606472dd351b354d04e238086bccce29e4e0c30e3863</citedby><cites>FETCH-LOGICAL-c407t-c6abce5e271e1e933c2d8606472dd351b354d04e238086bccce29e4e0c30e3863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021859614000434/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>LIU, Z.</creatorcontrib><creatorcontrib>LI, Y.</creatorcontrib><creatorcontrib>WANG, J.</creatorcontrib><creatorcontrib>HE, X.</creatorcontrib><creatorcontrib>TIAN, C.</creatorcontrib><title>Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host</title><title>The Journal of agricultural science</title><addtitle>J. Agric. Sci</addtitle><description>Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal rice (Oryza sativa) under low-temperature stress. The results demonstrated that low temperature might accelerate the biosynthesis of strigolactone in mycorrhizal rice roots by triggering the expression of genes for the synthesis of strigolactone, which acted as a host stress response signal. In addition, AMF prompted the host tricarboxylic acid (TCA) cycle by enhancing pyruvate metabolism, up-regulating the expression of genes of the TCA cycle under low-temperature stress and affecting the electron transport chain. The alternative oxidase pathway might be the main electron transport pathway in non-mycorrhizal rice under stress, while the cytochrome c oxidase (COX) pathway might be the predominant pathway in arbuscular mycorrhizal symbiosis. Mycorrhizal rice also had higher adenosine triphosphate production to maintain the natural status of respiration under stress conditions, which resulted in improved root growth status and alleviated low-temperature stress.</description><subject>Abiotic stress</subject><subject>adenosine triphosphate</subject><subject>ATP</subject><subject>Biosynthesis</subject><subject>cell respiration</subject><subject>cold stress</subject><subject>Crops and Soils Research Papers</subject><subject>cytochrome-c oxidase</subject><subject>electron transfer</subject><subject>electron transport chain</subject><subject>Environmental factors</subject><subject>Fungi</subject><subject>gene expression</subject><subject>Low temperature</subject><subject>Metabolism</subject><subject>mycorrhizal fungi</subject><subject>Oryza sativa</subject><subject>Plant growth</subject><subject>pyruvic acid</subject><subject>Respiration</subject><subject>Rice</subject><subject>root growth</subject><subject>roots</subject><subject>Soil microorganisms</subject><subject>stress response</subject><subject>Symbiosis</subject><subject>temperature</subject><subject>tricarboxylic acid cycle</subject><subject>vesicular arbuscular mycorrhizae</subject><issn>0021-8596</issn><issn>1469-5146</issn><issn>1469-5146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFv1TAMgCMEEo_BD-BEJC5cOpwmTRNuaMBAmsRh7FylqbuXqW2Kk2p6_AJ-Nnl6O0wgLrZkf_5syYy9FnAuQLTvrwFqYRqrhQIAJdUTthNK26op8SnbHdvVsf-cvUjprjAtWLNjvz-FcUTCJXPCtAZyOcSFz5hdH6eQZt5jvkcspYOPRPvwy03cLQNf4lI9rlHwyLdlQOJTvK8yzisW20bIUy7u9IE77unAx0h8j9PKR4ozz3vk-5jyS_ZsdFPCVw_5jN18-fzj4mt19f3y28XHq8oraHPltes9Nli3AgVaKX09GA1atfUwyEb0slEDKKylAaN77z3WFhWCl4DSaHnG3p28K8WfG6bczSF5nCa3YNxSJ7QBpYwEKOjbv9C7uNFSritUWwuobWsLJU6Up5gS4ditFGZHh05Ad_xN989vysyb08zoYuduKaTu5roGoQGEbawRhZAPVjf3FIZbfLT8v94_onib0A</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>LIU, Z.</creator><creator>LI, Y.</creator><creator>WANG, J.</creator><creator>HE, X.</creator><creator>TIAN, C.</creator><general>Cambridge University Press</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>M7N</scope></search><sort><creationdate>20150501</creationdate><title>Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host</title><author>LIU, Z. ; LI, Y. ; WANG, J. ; HE, X. ; TIAN, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-c6abce5e271e1e933c2d8606472dd351b354d04e238086bccce29e4e0c30e3863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abiotic stress</topic><topic>adenosine triphosphate</topic><topic>ATP</topic><topic>Biosynthesis</topic><topic>cell respiration</topic><topic>cold stress</topic><topic>Crops and Soils Research Papers</topic><topic>cytochrome-c oxidase</topic><topic>electron transfer</topic><topic>electron transport chain</topic><topic>Environmental factors</topic><topic>Fungi</topic><topic>gene expression</topic><topic>Low temperature</topic><topic>Metabolism</topic><topic>mycorrhizal fungi</topic><topic>Oryza sativa</topic><topic>Plant growth</topic><topic>pyruvic acid</topic><topic>Respiration</topic><topic>Rice</topic><topic>root growth</topic><topic>roots</topic><topic>Soil microorganisms</topic><topic>stress response</topic><topic>Symbiosis</topic><topic>temperature</topic><topic>tricarboxylic acid cycle</topic><topic>vesicular arbuscular mycorrhizae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, Z.</creatorcontrib><creatorcontrib>LI, Y.</creatorcontrib><creatorcontrib>WANG, J.</creatorcontrib><creatorcontrib>HE, X.</creatorcontrib><creatorcontrib>TIAN, C.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of agricultural science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, Z.</au><au>LI, Y.</au><au>WANG, J.</au><au>HE, X.</au><au>TIAN, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host</atitle><jtitle>The Journal of agricultural science</jtitle><addtitle>J. Agric. Sci</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>153</volume><issue>4</issue><spage>602</spage><epage>614</epage><pages>602-614</pages><issn>0021-8596</issn><issn>1469-5146</issn><eissn>1469-5146</eissn><coden>JASIAB</coden><abstract>Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal rice (Oryza sativa) under low-temperature stress. The results demonstrated that low temperature might accelerate the biosynthesis of strigolactone in mycorrhizal rice roots by triggering the expression of genes for the synthesis of strigolactone, which acted as a host stress response signal. In addition, AMF prompted the host tricarboxylic acid (TCA) cycle by enhancing pyruvate metabolism, up-regulating the expression of genes of the TCA cycle under low-temperature stress and affecting the electron transport chain. The alternative oxidase pathway might be the main electron transport pathway in non-mycorrhizal rice under stress, while the cytochrome c oxidase (COX) pathway might be the predominant pathway in arbuscular mycorrhizal symbiosis. Mycorrhizal rice also had higher adenosine triphosphate production to maintain the natural status of respiration under stress conditions, which resulted in improved root growth status and alleviated low-temperature stress.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0021859614000434</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8596 |
ispartof | The Journal of agricultural science, 2015-05, Vol.153 (4), p.602-614 |
issn | 0021-8596 1469-5146 1469-5146 |
language | eng |
recordid | cdi_proquest_miscellaneous_1680448300 |
source | Cambridge Journals |
subjects | Abiotic stress adenosine triphosphate ATP Biosynthesis cell respiration cold stress Crops and Soils Research Papers cytochrome-c oxidase electron transfer electron transport chain Environmental factors Fungi gene expression Low temperature Metabolism mycorrhizal fungi Oryza sativa Plant growth pyruvic acid Respiration Rice root growth roots Soil microorganisms stress response Symbiosis temperature tricarboxylic acid cycle vesicular arbuscular mycorrhizae |
title | Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20respiration%20metabolism%20between%20mycorrhizal%20and%20non-mycorrhizal%20rice%20under%20low-temperature%20stress:%20a%20cry%20for%20help%20from%20the%20host&rft.jtitle=The%20Journal%20of%20agricultural%20science&rft.au=LIU,%20Z.&rft.date=2015-05-01&rft.volume=153&rft.issue=4&rft.spage=602&rft.epage=614&rft.pages=602-614&rft.issn=0021-8596&rft.eissn=1469-5146&rft.coden=JASIAB&rft_id=info:doi/10.1017/S0021859614000434&rft_dat=%3Cproquest_cross%3E1680448300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672102979&rft_id=info:pmid/&rft_cupid=10_1017_S0021859614000434&rfr_iscdi=true |