Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host

Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of agricultural science 2015-05, Vol.153 (4), p.602-614
Hauptverfasser: LIU, Z., LI, Y., WANG, J., HE, X., TIAN, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 4
container_start_page 602
container_title The Journal of agricultural science
container_volume 153
creator LIU, Z.
LI, Y.
WANG, J.
HE, X.
TIAN, C.
description Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal rice (Oryza sativa) under low-temperature stress. The results demonstrated that low temperature might accelerate the biosynthesis of strigolactone in mycorrhizal rice roots by triggering the expression of genes for the synthesis of strigolactone, which acted as a host stress response signal. In addition, AMF prompted the host tricarboxylic acid (TCA) cycle by enhancing pyruvate metabolism, up-regulating the expression of genes of the TCA cycle under low-temperature stress and affecting the electron transport chain. The alternative oxidase pathway might be the main electron transport pathway in non-mycorrhizal rice under stress, while the cytochrome c oxidase (COX) pathway might be the predominant pathway in arbuscular mycorrhizal symbiosis. Mycorrhizal rice also had higher adenosine triphosphate production to maintain the natural status of respiration under stress conditions, which resulted in improved root growth status and alleviated low-temperature stress.
doi_str_mv 10.1017/S0021859614000434
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680448300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0021859614000434</cupid><sourcerecordid>1680448300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-c6abce5e271e1e933c2d8606472dd351b354d04e238086bccce29e4e0c30e3863</originalsourceid><addsrcrecordid>eNp1kUFv1TAMgCMEEo_BD-BEJC5cOpwmTRNuaMBAmsRh7FylqbuXqW2Kk2p6_AJ-Nnl6O0wgLrZkf_5syYy9FnAuQLTvrwFqYRqrhQIAJdUTthNK26op8SnbHdvVsf-cvUjprjAtWLNjvz-FcUTCJXPCtAZyOcSFz5hdH6eQZt5jvkcspYOPRPvwy03cLQNf4lI9rlHwyLdlQOJTvK8yzisW20bIUy7u9IE77unAx0h8j9PKR4ozz3vk-5jyS_ZsdFPCVw_5jN18-fzj4mt19f3y28XHq8oraHPltes9Nli3AgVaKX09GA1atfUwyEb0slEDKKylAaN77z3WFhWCl4DSaHnG3p28K8WfG6bczSF5nCa3YNxSJ7QBpYwEKOjbv9C7uNFSritUWwuobWsLJU6Up5gS4ditFGZHh05Ad_xN989vysyb08zoYuduKaTu5roGoQGEbawRhZAPVjf3FIZbfLT8v94_onib0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672102979</pqid></control><display><type>article</type><title>Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host</title><source>Cambridge Journals</source><creator>LIU, Z. ; LI, Y. ; WANG, J. ; HE, X. ; TIAN, C.</creator><creatorcontrib>LIU, Z. ; LI, Y. ; WANG, J. ; HE, X. ; TIAN, C.</creatorcontrib><description>Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal rice (Oryza sativa) under low-temperature stress. The results demonstrated that low temperature might accelerate the biosynthesis of strigolactone in mycorrhizal rice roots by triggering the expression of genes for the synthesis of strigolactone, which acted as a host stress response signal. In addition, AMF prompted the host tricarboxylic acid (TCA) cycle by enhancing pyruvate metabolism, up-regulating the expression of genes of the TCA cycle under low-temperature stress and affecting the electron transport chain. The alternative oxidase pathway might be the main electron transport pathway in non-mycorrhizal rice under stress, while the cytochrome c oxidase (COX) pathway might be the predominant pathway in arbuscular mycorrhizal symbiosis. Mycorrhizal rice also had higher adenosine triphosphate production to maintain the natural status of respiration under stress conditions, which resulted in improved root growth status and alleviated low-temperature stress.</description><identifier>ISSN: 0021-8596</identifier><identifier>ISSN: 1469-5146</identifier><identifier>EISSN: 1469-5146</identifier><identifier>DOI: 10.1017/S0021859614000434</identifier><identifier>CODEN: JASIAB</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Abiotic stress ; adenosine triphosphate ; ATP ; Biosynthesis ; cell respiration ; cold stress ; Crops and Soils Research Papers ; cytochrome-c oxidase ; electron transfer ; electron transport chain ; Environmental factors ; Fungi ; gene expression ; Low temperature ; Metabolism ; mycorrhizal fungi ; Oryza sativa ; Plant growth ; pyruvic acid ; Respiration ; Rice ; root growth ; roots ; Soil microorganisms ; stress response ; Symbiosis ; temperature ; tricarboxylic acid cycle ; vesicular arbuscular mycorrhizae</subject><ispartof>The Journal of agricultural science, 2015-05, Vol.153 (4), p.602-614</ispartof><rights>Copyright © Cambridge University Press 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-c6abce5e271e1e933c2d8606472dd351b354d04e238086bccce29e4e0c30e3863</citedby><cites>FETCH-LOGICAL-c407t-c6abce5e271e1e933c2d8606472dd351b354d04e238086bccce29e4e0c30e3863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021859614000434/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>LIU, Z.</creatorcontrib><creatorcontrib>LI, Y.</creatorcontrib><creatorcontrib>WANG, J.</creatorcontrib><creatorcontrib>HE, X.</creatorcontrib><creatorcontrib>TIAN, C.</creatorcontrib><title>Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host</title><title>The Journal of agricultural science</title><addtitle>J. Agric. Sci</addtitle><description>Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal rice (Oryza sativa) under low-temperature stress. The results demonstrated that low temperature might accelerate the biosynthesis of strigolactone in mycorrhizal rice roots by triggering the expression of genes for the synthesis of strigolactone, which acted as a host stress response signal. In addition, AMF prompted the host tricarboxylic acid (TCA) cycle by enhancing pyruvate metabolism, up-regulating the expression of genes of the TCA cycle under low-temperature stress and affecting the electron transport chain. The alternative oxidase pathway might be the main electron transport pathway in non-mycorrhizal rice under stress, while the cytochrome c oxidase (COX) pathway might be the predominant pathway in arbuscular mycorrhizal symbiosis. Mycorrhizal rice also had higher adenosine triphosphate production to maintain the natural status of respiration under stress conditions, which resulted in improved root growth status and alleviated low-temperature stress.</description><subject>Abiotic stress</subject><subject>adenosine triphosphate</subject><subject>ATP</subject><subject>Biosynthesis</subject><subject>cell respiration</subject><subject>cold stress</subject><subject>Crops and Soils Research Papers</subject><subject>cytochrome-c oxidase</subject><subject>electron transfer</subject><subject>electron transport chain</subject><subject>Environmental factors</subject><subject>Fungi</subject><subject>gene expression</subject><subject>Low temperature</subject><subject>Metabolism</subject><subject>mycorrhizal fungi</subject><subject>Oryza sativa</subject><subject>Plant growth</subject><subject>pyruvic acid</subject><subject>Respiration</subject><subject>Rice</subject><subject>root growth</subject><subject>roots</subject><subject>Soil microorganisms</subject><subject>stress response</subject><subject>Symbiosis</subject><subject>temperature</subject><subject>tricarboxylic acid cycle</subject><subject>vesicular arbuscular mycorrhizae</subject><issn>0021-8596</issn><issn>1469-5146</issn><issn>1469-5146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFv1TAMgCMEEo_BD-BEJC5cOpwmTRNuaMBAmsRh7FylqbuXqW2Kk2p6_AJ-Nnl6O0wgLrZkf_5syYy9FnAuQLTvrwFqYRqrhQIAJdUTthNK26op8SnbHdvVsf-cvUjprjAtWLNjvz-FcUTCJXPCtAZyOcSFz5hdH6eQZt5jvkcspYOPRPvwy03cLQNf4lI9rlHwyLdlQOJTvK8yzisW20bIUy7u9IE77unAx0h8j9PKR4ozz3vk-5jyS_ZsdFPCVw_5jN18-fzj4mt19f3y28XHq8oraHPltes9Nli3AgVaKX09GA1atfUwyEb0slEDKKylAaN77z3WFhWCl4DSaHnG3p28K8WfG6bczSF5nCa3YNxSJ7QBpYwEKOjbv9C7uNFSritUWwuobWsLJU6Up5gS4ditFGZHh05Ad_xN989vysyb08zoYuduKaTu5roGoQGEbawRhZAPVjf3FIZbfLT8v94_onib0A</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>LIU, Z.</creator><creator>LI, Y.</creator><creator>WANG, J.</creator><creator>HE, X.</creator><creator>TIAN, C.</creator><general>Cambridge University Press</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>M7N</scope></search><sort><creationdate>20150501</creationdate><title>Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host</title><author>LIU, Z. ; LI, Y. ; WANG, J. ; HE, X. ; TIAN, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-c6abce5e271e1e933c2d8606472dd351b354d04e238086bccce29e4e0c30e3863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abiotic stress</topic><topic>adenosine triphosphate</topic><topic>ATP</topic><topic>Biosynthesis</topic><topic>cell respiration</topic><topic>cold stress</topic><topic>Crops and Soils Research Papers</topic><topic>cytochrome-c oxidase</topic><topic>electron transfer</topic><topic>electron transport chain</topic><topic>Environmental factors</topic><topic>Fungi</topic><topic>gene expression</topic><topic>Low temperature</topic><topic>Metabolism</topic><topic>mycorrhizal fungi</topic><topic>Oryza sativa</topic><topic>Plant growth</topic><topic>pyruvic acid</topic><topic>Respiration</topic><topic>Rice</topic><topic>root growth</topic><topic>roots</topic><topic>Soil microorganisms</topic><topic>stress response</topic><topic>Symbiosis</topic><topic>temperature</topic><topic>tricarboxylic acid cycle</topic><topic>vesicular arbuscular mycorrhizae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, Z.</creatorcontrib><creatorcontrib>LI, Y.</creatorcontrib><creatorcontrib>WANG, J.</creatorcontrib><creatorcontrib>HE, X.</creatorcontrib><creatorcontrib>TIAN, C.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>The Journal of agricultural science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, Z.</au><au>LI, Y.</au><au>WANG, J.</au><au>HE, X.</au><au>TIAN, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host</atitle><jtitle>The Journal of agricultural science</jtitle><addtitle>J. Agric. Sci</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>153</volume><issue>4</issue><spage>602</spage><epage>614</epage><pages>602-614</pages><issn>0021-8596</issn><issn>1469-5146</issn><eissn>1469-5146</eissn><coden>JASIAB</coden><abstract>Low-temperature stress is an important environmental factor that severely disrupts plant respiration but can be alleviated by symbiotic arbuscular mycorrhizal fungi (AMF). In the current study, a pot experiment was performed to determine changes in the respiratory metabolic capacity of mycorrhizal rice (Oryza sativa) under low-temperature stress. The results demonstrated that low temperature might accelerate the biosynthesis of strigolactone in mycorrhizal rice roots by triggering the expression of genes for the synthesis of strigolactone, which acted as a host stress response signal. In addition, AMF prompted the host tricarboxylic acid (TCA) cycle by enhancing pyruvate metabolism, up-regulating the expression of genes of the TCA cycle under low-temperature stress and affecting the electron transport chain. The alternative oxidase pathway might be the main electron transport pathway in non-mycorrhizal rice under stress, while the cytochrome c oxidase (COX) pathway might be the predominant pathway in arbuscular mycorrhizal symbiosis. Mycorrhizal rice also had higher adenosine triphosphate production to maintain the natural status of respiration under stress conditions, which resulted in improved root growth status and alleviated low-temperature stress.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0021859614000434</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8596
ispartof The Journal of agricultural science, 2015-05, Vol.153 (4), p.602-614
issn 0021-8596
1469-5146
1469-5146
language eng
recordid cdi_proquest_miscellaneous_1680448300
source Cambridge Journals
subjects Abiotic stress
adenosine triphosphate
ATP
Biosynthesis
cell respiration
cold stress
Crops and Soils Research Papers
cytochrome-c oxidase
electron transfer
electron transport chain
Environmental factors
Fungi
gene expression
Low temperature
Metabolism
mycorrhizal fungi
Oryza sativa
Plant growth
pyruvic acid
Respiration
Rice
root growth
roots
Soil microorganisms
stress response
Symbiosis
temperature
tricarboxylic acid cycle
vesicular arbuscular mycorrhizae
title Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20respiration%20metabolism%20between%20mycorrhizal%20and%20non-mycorrhizal%20rice%20under%20low-temperature%20stress:%20a%20cry%20for%20help%20from%20the%20host&rft.jtitle=The%20Journal%20of%20agricultural%20science&rft.au=LIU,%20Z.&rft.date=2015-05-01&rft.volume=153&rft.issue=4&rft.spage=602&rft.epage=614&rft.pages=602-614&rft.issn=0021-8596&rft.eissn=1469-5146&rft.coden=JASIAB&rft_id=info:doi/10.1017/S0021859614000434&rft_dat=%3Cproquest_cross%3E1680448300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672102979&rft_id=info:pmid/&rft_cupid=10_1017_S0021859614000434&rfr_iscdi=true