Mitochondrial function and mitochondrial DNA maintenance with advancing age
We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrit...
Gespeichert in:
Veröffentlicht in: | Biogerontology (Dordrecht) 2014-10, Vol.15 (5), p.417-438 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | 5 |
container_start_page | 417 |
container_title | Biogerontology (Dordrecht) |
container_volume | 15 |
creator | Gaziev, Azhub I. Abdullaev, Serzh Podlutsky, Andrej |
description | We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity. |
doi_str_mv | 10.1007/s10522-014-9515-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680445220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3415166041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-1903efd2addd4d11d26cb006b7b6db1a5f3e71dc62f4c9f3e6ea08d058dafdf03</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EouXxAWxQJDZsAh4ndpxlVZ6iwAbWluNHmypxSpyA-HtcpSBAQmJlj-bMtTwHoSPAZ4Bxdu4BU0JiDGmcU6Ax2UJjoFkSs4zx7XBPeB7TjOQjtOf9EmNghNFdNCIUB47DGN3dl12jFo3TbSmryPZOdWXjIul0VP9oXTxMolqWrjNOOmWit7JbRFK_hqJ080jOzQHasbLy5nBz7qPnq8un6U08e7y-nU5msUoT3sWQ48RYTaTWOtUAmjBVYMyKrGC6AEltYjLQihGbqjwUzEjMNaZcS6stTvbR6ZC7apuX3vhO1KVXpqqkM03vBTCO0zRs5j8ocEgJ5CygJ7_QZdO3LnxEAKUsT7Kw4kDBQKm28b41VqzaspbtuwAs1lLEIEUEKWItRZAwc7xJ7ova6K-JTwsBIAPgQ8vNTfvt6T9TPwDnrpbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556937515</pqid></control><display><type>article</type><title>Mitochondrial function and mitochondrial DNA maintenance with advancing age</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gaziev, Azhub I. ; Abdullaev, Serzh ; Podlutsky, Andrej</creator><creatorcontrib>Gaziev, Azhub I. ; Abdullaev, Serzh ; Podlutsky, Andrej</creatorcontrib><description>We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.</description><identifier>ISSN: 1389-5729</identifier><identifier>EISSN: 1573-6768</identifier><identifier>DOI: 10.1007/s10522-014-9515-2</identifier><identifier>PMID: 25015781</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aging ; Aging - genetics ; Aging - metabolism ; Aging - pathology ; Animals ; Antioxidants - metabolism ; Autophagy ; Biomedical and Life Sciences ; Biosynthesis ; Cell Biology ; Cell cycle ; Cell division ; Developmental Biology ; DNA Damage ; DNA Packaging ; DNA Repair ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Genomes ; Geriatrics/Gerontology ; Humans ; Life Sciences ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Degradation ; Mitochondrial DNA ; Mutagenesis ; Mutation ; Phosphorylation ; Proteins ; Reactive Nitrogen Species - metabolism ; Reactive Oxygen Species - metabolism ; Review Article</subject><ispartof>Biogerontology (Dordrecht), 2014-10, Vol.15 (5), p.417-438</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-1903efd2addd4d11d26cb006b7b6db1a5f3e71dc62f4c9f3e6ea08d058dafdf03</citedby><cites>FETCH-LOGICAL-c438t-1903efd2addd4d11d26cb006b7b6db1a5f3e71dc62f4c9f3e6ea08d058dafdf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10522-014-9515-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10522-014-9515-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25015781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaziev, Azhub I.</creatorcontrib><creatorcontrib>Abdullaev, Serzh</creatorcontrib><creatorcontrib>Podlutsky, Andrej</creatorcontrib><title>Mitochondrial function and mitochondrial DNA maintenance with advancing age</title><title>Biogerontology (Dordrecht)</title><addtitle>Biogerontology</addtitle><addtitle>Biogerontology</addtitle><description>We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.</description><subject>Aging</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Aging - pathology</subject><subject>Animals</subject><subject>Antioxidants - metabolism</subject><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Developmental Biology</subject><subject>DNA Damage</subject><subject>DNA Packaging</subject><subject>DNA Repair</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Genomes</subject><subject>Geriatrics/Gerontology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Degradation</subject><subject>Mitochondrial DNA</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Reactive Nitrogen Species - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Review Article</subject><issn>1389-5729</issn><issn>1573-6768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkctOwzAQRS0EouXxAWxQJDZsAh4ndpxlVZ6iwAbWluNHmypxSpyA-HtcpSBAQmJlj-bMtTwHoSPAZ4Bxdu4BU0JiDGmcU6Ax2UJjoFkSs4zx7XBPeB7TjOQjtOf9EmNghNFdNCIUB47DGN3dl12jFo3TbSmryPZOdWXjIul0VP9oXTxMolqWrjNOOmWit7JbRFK_hqJ080jOzQHasbLy5nBz7qPnq8un6U08e7y-nU5msUoT3sWQ48RYTaTWOtUAmjBVYMyKrGC6AEltYjLQihGbqjwUzEjMNaZcS6stTvbR6ZC7apuX3vhO1KVXpqqkM03vBTCO0zRs5j8ocEgJ5CygJ7_QZdO3LnxEAKUsT7Kw4kDBQKm28b41VqzaspbtuwAs1lLEIEUEKWItRZAwc7xJ7ova6K-JTwsBIAPgQ8vNTfvt6T9TPwDnrpbq</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Gaziev, Azhub I.</creator><creator>Abdullaev, Serzh</creator><creator>Podlutsky, Andrej</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88J</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2R</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20141001</creationdate><title>Mitochondrial function and mitochondrial DNA maintenance with advancing age</title><author>Gaziev, Azhub I. ; Abdullaev, Serzh ; Podlutsky, Andrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-1903efd2addd4d11d26cb006b7b6db1a5f3e71dc62f4c9f3e6ea08d058dafdf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aging</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Aging - pathology</topic><topic>Animals</topic><topic>Antioxidants - metabolism</topic><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Developmental Biology</topic><topic>DNA Damage</topic><topic>DNA Packaging</topic><topic>DNA Repair</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Genomes</topic><topic>Geriatrics/Gerontology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Degradation</topic><topic>Mitochondrial DNA</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Reactive Nitrogen Species - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaziev, Azhub I.</creatorcontrib><creatorcontrib>Abdullaev, Serzh</creatorcontrib><creatorcontrib>Podlutsky, Andrej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Social Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Biogerontology (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaziev, Azhub I.</au><au>Abdullaev, Serzh</au><au>Podlutsky, Andrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial function and mitochondrial DNA maintenance with advancing age</atitle><jtitle>Biogerontology (Dordrecht)</jtitle><stitle>Biogerontology</stitle><addtitle>Biogerontology</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>15</volume><issue>5</issue><spage>417</spage><epage>438</epage><pages>417-438</pages><issn>1389-5729</issn><eissn>1573-6768</eissn><abstract>We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>25015781</pmid><doi>10.1007/s10522-014-9515-2</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-5729 |
ispartof | Biogerontology (Dordrecht), 2014-10, Vol.15 (5), p.417-438 |
issn | 1389-5729 1573-6768 |
language | eng |
recordid | cdi_proquest_miscellaneous_1680445220 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Aging Aging - genetics Aging - metabolism Aging - pathology Animals Antioxidants - metabolism Autophagy Biomedical and Life Sciences Biosynthesis Cell Biology Cell cycle Cell division Developmental Biology DNA Damage DNA Packaging DNA Repair DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Genomes Geriatrics/Gerontology Humans Life Sciences Mitochondria Mitochondria - metabolism Mitochondrial Degradation Mitochondrial DNA Mutagenesis Mutation Phosphorylation Proteins Reactive Nitrogen Species - metabolism Reactive Oxygen Species - metabolism Review Article |
title | Mitochondrial function and mitochondrial DNA maintenance with advancing age |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20function%20and%20mitochondrial%20DNA%20maintenance%20with%20advancing%20age&rft.jtitle=Biogerontology%20(Dordrecht)&rft.au=Gaziev,%20Azhub%20I.&rft.date=2014-10-01&rft.volume=15&rft.issue=5&rft.spage=417&rft.epage=438&rft.pages=417-438&rft.issn=1389-5729&rft.eissn=1573-6768&rft_id=info:doi/10.1007/s10522-014-9515-2&rft_dat=%3Cproquest_cross%3E3415166041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556937515&rft_id=info:pmid/25015781&rfr_iscdi=true |