Mitochondrial function and mitochondrial DNA maintenance with advancing age

We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogerontology (Dordrecht) 2014-10, Vol.15 (5), p.417-438
Hauptverfasser: Gaziev, Azhub I., Abdullaev, Serzh, Podlutsky, Andrej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 5
container_start_page 417
container_title Biogerontology (Dordrecht)
container_volume 15
creator Gaziev, Azhub I.
Abdullaev, Serzh
Podlutsky, Andrej
description We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.
doi_str_mv 10.1007/s10522-014-9515-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680445220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3415166041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-1903efd2addd4d11d26cb006b7b6db1a5f3e71dc62f4c9f3e6ea08d058dafdf03</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EouXxAWxQJDZsAh4ndpxlVZ6iwAbWluNHmypxSpyA-HtcpSBAQmJlj-bMtTwHoSPAZ4Bxdu4BU0JiDGmcU6Ax2UJjoFkSs4zx7XBPeB7TjOQjtOf9EmNghNFdNCIUB47DGN3dl12jFo3TbSmryPZOdWXjIul0VP9oXTxMolqWrjNOOmWit7JbRFK_hqJ080jOzQHasbLy5nBz7qPnq8un6U08e7y-nU5msUoT3sWQ48RYTaTWOtUAmjBVYMyKrGC6AEltYjLQihGbqjwUzEjMNaZcS6stTvbR6ZC7apuX3vhO1KVXpqqkM03vBTCO0zRs5j8ocEgJ5CygJ7_QZdO3LnxEAKUsT7Kw4kDBQKm28b41VqzaspbtuwAs1lLEIEUEKWItRZAwc7xJ7ova6K-JTwsBIAPgQ8vNTfvt6T9TPwDnrpbq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556937515</pqid></control><display><type>article</type><title>Mitochondrial function and mitochondrial DNA maintenance with advancing age</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gaziev, Azhub I. ; Abdullaev, Serzh ; Podlutsky, Andrej</creator><creatorcontrib>Gaziev, Azhub I. ; Abdullaev, Serzh ; Podlutsky, Andrej</creatorcontrib><description>We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.</description><identifier>ISSN: 1389-5729</identifier><identifier>EISSN: 1573-6768</identifier><identifier>DOI: 10.1007/s10522-014-9515-2</identifier><identifier>PMID: 25015781</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aging ; Aging - genetics ; Aging - metabolism ; Aging - pathology ; Animals ; Antioxidants - metabolism ; Autophagy ; Biomedical and Life Sciences ; Biosynthesis ; Cell Biology ; Cell cycle ; Cell division ; Developmental Biology ; DNA Damage ; DNA Packaging ; DNA Repair ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Genomes ; Geriatrics/Gerontology ; Humans ; Life Sciences ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Degradation ; Mitochondrial DNA ; Mutagenesis ; Mutation ; Phosphorylation ; Proteins ; Reactive Nitrogen Species - metabolism ; Reactive Oxygen Species - metabolism ; Review Article</subject><ispartof>Biogerontology (Dordrecht), 2014-10, Vol.15 (5), p.417-438</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-1903efd2addd4d11d26cb006b7b6db1a5f3e71dc62f4c9f3e6ea08d058dafdf03</citedby><cites>FETCH-LOGICAL-c438t-1903efd2addd4d11d26cb006b7b6db1a5f3e71dc62f4c9f3e6ea08d058dafdf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10522-014-9515-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10522-014-9515-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25015781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaziev, Azhub I.</creatorcontrib><creatorcontrib>Abdullaev, Serzh</creatorcontrib><creatorcontrib>Podlutsky, Andrej</creatorcontrib><title>Mitochondrial function and mitochondrial DNA maintenance with advancing age</title><title>Biogerontology (Dordrecht)</title><addtitle>Biogerontology</addtitle><addtitle>Biogerontology</addtitle><description>We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.</description><subject>Aging</subject><subject>Aging - genetics</subject><subject>Aging - metabolism</subject><subject>Aging - pathology</subject><subject>Animals</subject><subject>Antioxidants - metabolism</subject><subject>Autophagy</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Developmental Biology</subject><subject>DNA Damage</subject><subject>DNA Packaging</subject><subject>DNA Repair</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Genomes</subject><subject>Geriatrics/Gerontology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Degradation</subject><subject>Mitochondrial DNA</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Reactive Nitrogen Species - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Review Article</subject><issn>1389-5729</issn><issn>1573-6768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkctOwzAQRS0EouXxAWxQJDZsAh4ndpxlVZ6iwAbWluNHmypxSpyA-HtcpSBAQmJlj-bMtTwHoSPAZ4Bxdu4BU0JiDGmcU6Ax2UJjoFkSs4zx7XBPeB7TjOQjtOf9EmNghNFdNCIUB47DGN3dl12jFo3TbSmryPZOdWXjIul0VP9oXTxMolqWrjNOOmWit7JbRFK_hqJ080jOzQHasbLy5nBz7qPnq8un6U08e7y-nU5msUoT3sWQ48RYTaTWOtUAmjBVYMyKrGC6AEltYjLQihGbqjwUzEjMNaZcS6stTvbR6ZC7apuX3vhO1KVXpqqkM03vBTCO0zRs5j8ocEgJ5CygJ7_QZdO3LnxEAKUsT7Kw4kDBQKm28b41VqzaspbtuwAs1lLEIEUEKWItRZAwc7xJ7ova6K-JTwsBIAPgQ8vNTfvt6T9TPwDnrpbq</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Gaziev, Azhub I.</creator><creator>Abdullaev, Serzh</creator><creator>Podlutsky, Andrej</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88J</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2R</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20141001</creationdate><title>Mitochondrial function and mitochondrial DNA maintenance with advancing age</title><author>Gaziev, Azhub I. ; Abdullaev, Serzh ; Podlutsky, Andrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-1903efd2addd4d11d26cb006b7b6db1a5f3e71dc62f4c9f3e6ea08d058dafdf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aging</topic><topic>Aging - genetics</topic><topic>Aging - metabolism</topic><topic>Aging - pathology</topic><topic>Animals</topic><topic>Antioxidants - metabolism</topic><topic>Autophagy</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Developmental Biology</topic><topic>DNA Damage</topic><topic>DNA Packaging</topic><topic>DNA Repair</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Genomes</topic><topic>Geriatrics/Gerontology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Degradation</topic><topic>Mitochondrial DNA</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Reactive Nitrogen Species - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaziev, Azhub I.</creatorcontrib><creatorcontrib>Abdullaev, Serzh</creatorcontrib><creatorcontrib>Podlutsky, Andrej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Social Science Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Biogerontology (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaziev, Azhub I.</au><au>Abdullaev, Serzh</au><au>Podlutsky, Andrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial function and mitochondrial DNA maintenance with advancing age</atitle><jtitle>Biogerontology (Dordrecht)</jtitle><stitle>Biogerontology</stitle><addtitle>Biogerontology</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>15</volume><issue>5</issue><spage>417</spage><epage>438</epage><pages>417-438</pages><issn>1389-5729</issn><eissn>1573-6768</eissn><abstract>We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>25015781</pmid><doi>10.1007/s10522-014-9515-2</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-5729
ispartof Biogerontology (Dordrecht), 2014-10, Vol.15 (5), p.417-438
issn 1389-5729
1573-6768
language eng
recordid cdi_proquest_miscellaneous_1680445220
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aging
Aging - genetics
Aging - metabolism
Aging - pathology
Animals
Antioxidants - metabolism
Autophagy
Biomedical and Life Sciences
Biosynthesis
Cell Biology
Cell cycle
Cell division
Developmental Biology
DNA Damage
DNA Packaging
DNA Repair
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Genomes
Geriatrics/Gerontology
Humans
Life Sciences
Mitochondria
Mitochondria - metabolism
Mitochondrial Degradation
Mitochondrial DNA
Mutagenesis
Mutation
Phosphorylation
Proteins
Reactive Nitrogen Species - metabolism
Reactive Oxygen Species - metabolism
Review Article
title Mitochondrial function and mitochondrial DNA maintenance with advancing age
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20function%20and%20mitochondrial%20DNA%20maintenance%20with%20advancing%20age&rft.jtitle=Biogerontology%20(Dordrecht)&rft.au=Gaziev,%20Azhub%20I.&rft.date=2014-10-01&rft.volume=15&rft.issue=5&rft.spage=417&rft.epage=438&rft.pages=417-438&rft.issn=1389-5729&rft.eissn=1573-6768&rft_id=info:doi/10.1007/s10522-014-9515-2&rft_dat=%3Cproquest_cross%3E3415166041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556937515&rft_id=info:pmid/25015781&rfr_iscdi=true