Imaging Structure and Composition Homogeneity of 300 mm SiGe Virtual Substrates for Advanced CMOS Applications by Scanning X‑ray Diffraction Microscopy

Advanced semiconductor heterostructures are at the very heart of many modern technologies, including aggressively scaled complementary metal oxide semiconductor transistors for high performance computing and laser diodes for low power solid state lighting applications. The control of structural and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-05, Vol.7 (17), p.9031-9037
Hauptverfasser: Zoellner, Marvin H, Richard, Marie-Ingrid, Chahine, Gilbert A, Zaumseil, Peter, Reich, Christian, Capellini, Giovanni, Montalenti, Francesco, Marzegalli, Anna, Xie, Ya-Hong, Schülli, Tobias U, Häberlen, Maik, Storck, Peter, Schroeder, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9037
container_issue 17
container_start_page 9031
container_title ACS applied materials & interfaces
container_volume 7
creator Zoellner, Marvin H
Richard, Marie-Ingrid
Chahine, Gilbert A
Zaumseil, Peter
Reich, Christian
Capellini, Giovanni
Montalenti, Francesco
Marzegalli, Anna
Xie, Ya-Hong
Schülli, Tobias U
Häberlen, Maik
Storck, Peter
Schroeder, Thomas
description Advanced semiconductor heterostructures are at the very heart of many modern technologies, including aggressively scaled complementary metal oxide semiconductor transistors for high performance computing and laser diodes for low power solid state lighting applications. The control of structural and compositional homogeneity of these semiconductor heterostructures is the key to success to further develop these state-of-the-art technologies. In this article, we report on the lateral distribution of tilt, composition, and strain across step-graded SiGe strain relaxed buffer layers on 300 mm Si(001) wafers treated with and without chemical–mechanical polishing. By using the advanced synchrotron based scanning X-ray diffraction microscopy technique K-Map together with micro-Raman spectroscopy and Atomic Force Microscopy, we are able to establish a partial correlation between real space morphology and structural properties of the sample resolved at the micrometer scale. In particular, we demonstrate that the lattice plane bending of the commonly observed cross-hatch pattern is caused by dislocations. Our results show a strong local correlation between the strain field and composition distribution, indicating that the adatom surface diffusion during growth is driven by strain field fluctuations induced by the underlying dislocation network. Finally, it is revealed that a superficial chemical–mechanical polishing of cross-hatched surfaces does not lead to any significant change of tilt, composition, and strain variation compared to that of as-grown samples.
doi_str_mv 10.1021/am508968b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680189235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680189235</sourcerecordid><originalsourceid>FETCH-LOGICAL-a416t-78b1830f95e85f120914863c88460c598e61dea7565cab3b204f00f3714a2d3a3</originalsourceid><addsrcrecordid>eNptkbtuFDEUhi0EIiFQ8ALIDRIUC77OesrVAkmkRCkGEN3ojMdeORrbg-2JNB2vkDKvx5Mwy4atqM4pPn3_uSD0mpIPlDD6Ebwkqq5U9wSd0lqIlWKSPT32QpygFznfElJxRuRzdMKkWlPB6lP0cOlh58IONyVNukzJYAg93kY_xuyKiwFfRB93JhhXZhwt5oRg73Hjzg3-7lKZYMDN1OWSoJiMbUx4099B0GbRXN80eDOOg9Owd2XczbjREMI-8sfvX_cJZvzJWZtA_w27djrFrOM4v0TPLAzZvHqsZ-jbl89ftxerq5vzy-3magWCVmW1Vh1VnNhaGiUtZaSmQlVcKyUqomWtTEV7A2tZSQ0d7xgRlhDLl_2B9Rz4GXp38I4p_pxMLq13WZthgGDilFtaKUJVzbhc0PcHdD9jTsa2Y3Ie0txS0u4_0R4_sbBvHrVT501_JP-dfgHeHgDQub2NUwrLlv8R_QGsUZEF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680189235</pqid></control><display><type>article</type><title>Imaging Structure and Composition Homogeneity of 300 mm SiGe Virtual Substrates for Advanced CMOS Applications by Scanning X‑ray Diffraction Microscopy</title><source>American Chemical Society Journals</source><creator>Zoellner, Marvin H ; Richard, Marie-Ingrid ; Chahine, Gilbert A ; Zaumseil, Peter ; Reich, Christian ; Capellini, Giovanni ; Montalenti, Francesco ; Marzegalli, Anna ; Xie, Ya-Hong ; Schülli, Tobias U ; Häberlen, Maik ; Storck, Peter ; Schroeder, Thomas</creator><creatorcontrib>Zoellner, Marvin H ; Richard, Marie-Ingrid ; Chahine, Gilbert A ; Zaumseil, Peter ; Reich, Christian ; Capellini, Giovanni ; Montalenti, Francesco ; Marzegalli, Anna ; Xie, Ya-Hong ; Schülli, Tobias U ; Häberlen, Maik ; Storck, Peter ; Schroeder, Thomas</creatorcontrib><description>Advanced semiconductor heterostructures are at the very heart of many modern technologies, including aggressively scaled complementary metal oxide semiconductor transistors for high performance computing and laser diodes for low power solid state lighting applications. The control of structural and compositional homogeneity of these semiconductor heterostructures is the key to success to further develop these state-of-the-art technologies. In this article, we report on the lateral distribution of tilt, composition, and strain across step-graded SiGe strain relaxed buffer layers on 300 mm Si(001) wafers treated with and without chemical–mechanical polishing. By using the advanced synchrotron based scanning X-ray diffraction microscopy technique K-Map together with micro-Raman spectroscopy and Atomic Force Microscopy, we are able to establish a partial correlation between real space morphology and structural properties of the sample resolved at the micrometer scale. In particular, we demonstrate that the lattice plane bending of the commonly observed cross-hatch pattern is caused by dislocations. Our results show a strong local correlation between the strain field and composition distribution, indicating that the adatom surface diffusion during growth is driven by strain field fluctuations induced by the underlying dislocation network. Finally, it is revealed that a superficial chemical–mechanical polishing of cross-hatched surfaces does not lead to any significant change of tilt, composition, and strain variation compared to that of as-grown samples.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am508968b</identifier><identifier>PMID: 25871429</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2015-05, Vol.7 (17), p.9031-9037</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a416t-78b1830f95e85f120914863c88460c598e61dea7565cab3b204f00f3714a2d3a3</citedby><cites>FETCH-LOGICAL-a416t-78b1830f95e85f120914863c88460c598e61dea7565cab3b204f00f3714a2d3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am508968b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am508968b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25871429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zoellner, Marvin H</creatorcontrib><creatorcontrib>Richard, Marie-Ingrid</creatorcontrib><creatorcontrib>Chahine, Gilbert A</creatorcontrib><creatorcontrib>Zaumseil, Peter</creatorcontrib><creatorcontrib>Reich, Christian</creatorcontrib><creatorcontrib>Capellini, Giovanni</creatorcontrib><creatorcontrib>Montalenti, Francesco</creatorcontrib><creatorcontrib>Marzegalli, Anna</creatorcontrib><creatorcontrib>Xie, Ya-Hong</creatorcontrib><creatorcontrib>Schülli, Tobias U</creatorcontrib><creatorcontrib>Häberlen, Maik</creatorcontrib><creatorcontrib>Storck, Peter</creatorcontrib><creatorcontrib>Schroeder, Thomas</creatorcontrib><title>Imaging Structure and Composition Homogeneity of 300 mm SiGe Virtual Substrates for Advanced CMOS Applications by Scanning X‑ray Diffraction Microscopy</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Advanced semiconductor heterostructures are at the very heart of many modern technologies, including aggressively scaled complementary metal oxide semiconductor transistors for high performance computing and laser diodes for low power solid state lighting applications. The control of structural and compositional homogeneity of these semiconductor heterostructures is the key to success to further develop these state-of-the-art technologies. In this article, we report on the lateral distribution of tilt, composition, and strain across step-graded SiGe strain relaxed buffer layers on 300 mm Si(001) wafers treated with and without chemical–mechanical polishing. By using the advanced synchrotron based scanning X-ray diffraction microscopy technique K-Map together with micro-Raman spectroscopy and Atomic Force Microscopy, we are able to establish a partial correlation between real space morphology and structural properties of the sample resolved at the micrometer scale. In particular, we demonstrate that the lattice plane bending of the commonly observed cross-hatch pattern is caused by dislocations. Our results show a strong local correlation between the strain field and composition distribution, indicating that the adatom surface diffusion during growth is driven by strain field fluctuations induced by the underlying dislocation network. Finally, it is revealed that a superficial chemical–mechanical polishing of cross-hatched surfaces does not lead to any significant change of tilt, composition, and strain variation compared to that of as-grown samples.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkbtuFDEUhi0EIiFQ8ALIDRIUC77OesrVAkmkRCkGEN3ojMdeORrbg-2JNB2vkDKvx5Mwy4atqM4pPn3_uSD0mpIPlDD6Ebwkqq5U9wSd0lqIlWKSPT32QpygFznfElJxRuRzdMKkWlPB6lP0cOlh58IONyVNukzJYAg93kY_xuyKiwFfRB93JhhXZhwt5oRg73Hjzg3-7lKZYMDN1OWSoJiMbUx4099B0GbRXN80eDOOg9Owd2XczbjREMI-8sfvX_cJZvzJWZtA_w27djrFrOM4v0TPLAzZvHqsZ-jbl89ftxerq5vzy-3magWCVmW1Vh1VnNhaGiUtZaSmQlVcKyUqomWtTEV7A2tZSQ0d7xgRlhDLl_2B9Rz4GXp38I4p_pxMLq13WZthgGDilFtaKUJVzbhc0PcHdD9jTsa2Y3Ie0txS0u4_0R4_sbBvHrVT501_JP-dfgHeHgDQub2NUwrLlv8R_QGsUZEF</recordid><startdate>20150506</startdate><enddate>20150506</enddate><creator>Zoellner, Marvin H</creator><creator>Richard, Marie-Ingrid</creator><creator>Chahine, Gilbert A</creator><creator>Zaumseil, Peter</creator><creator>Reich, Christian</creator><creator>Capellini, Giovanni</creator><creator>Montalenti, Francesco</creator><creator>Marzegalli, Anna</creator><creator>Xie, Ya-Hong</creator><creator>Schülli, Tobias U</creator><creator>Häberlen, Maik</creator><creator>Storck, Peter</creator><creator>Schroeder, Thomas</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150506</creationdate><title>Imaging Structure and Composition Homogeneity of 300 mm SiGe Virtual Substrates for Advanced CMOS Applications by Scanning X‑ray Diffraction Microscopy</title><author>Zoellner, Marvin H ; Richard, Marie-Ingrid ; Chahine, Gilbert A ; Zaumseil, Peter ; Reich, Christian ; Capellini, Giovanni ; Montalenti, Francesco ; Marzegalli, Anna ; Xie, Ya-Hong ; Schülli, Tobias U ; Häberlen, Maik ; Storck, Peter ; Schroeder, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a416t-78b1830f95e85f120914863c88460c598e61dea7565cab3b204f00f3714a2d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zoellner, Marvin H</creatorcontrib><creatorcontrib>Richard, Marie-Ingrid</creatorcontrib><creatorcontrib>Chahine, Gilbert A</creatorcontrib><creatorcontrib>Zaumseil, Peter</creatorcontrib><creatorcontrib>Reich, Christian</creatorcontrib><creatorcontrib>Capellini, Giovanni</creatorcontrib><creatorcontrib>Montalenti, Francesco</creatorcontrib><creatorcontrib>Marzegalli, Anna</creatorcontrib><creatorcontrib>Xie, Ya-Hong</creatorcontrib><creatorcontrib>Schülli, Tobias U</creatorcontrib><creatorcontrib>Häberlen, Maik</creatorcontrib><creatorcontrib>Storck, Peter</creatorcontrib><creatorcontrib>Schroeder, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zoellner, Marvin H</au><au>Richard, Marie-Ingrid</au><au>Chahine, Gilbert A</au><au>Zaumseil, Peter</au><au>Reich, Christian</au><au>Capellini, Giovanni</au><au>Montalenti, Francesco</au><au>Marzegalli, Anna</au><au>Xie, Ya-Hong</au><au>Schülli, Tobias U</au><au>Häberlen, Maik</au><au>Storck, Peter</au><au>Schroeder, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Structure and Composition Homogeneity of 300 mm SiGe Virtual Substrates for Advanced CMOS Applications by Scanning X‑ray Diffraction Microscopy</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-05-06</date><risdate>2015</risdate><volume>7</volume><issue>17</issue><spage>9031</spage><epage>9037</epage><pages>9031-9037</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Advanced semiconductor heterostructures are at the very heart of many modern technologies, including aggressively scaled complementary metal oxide semiconductor transistors for high performance computing and laser diodes for low power solid state lighting applications. The control of structural and compositional homogeneity of these semiconductor heterostructures is the key to success to further develop these state-of-the-art technologies. In this article, we report on the lateral distribution of tilt, composition, and strain across step-graded SiGe strain relaxed buffer layers on 300 mm Si(001) wafers treated with and without chemical–mechanical polishing. By using the advanced synchrotron based scanning X-ray diffraction microscopy technique K-Map together with micro-Raman spectroscopy and Atomic Force Microscopy, we are able to establish a partial correlation between real space morphology and structural properties of the sample resolved at the micrometer scale. In particular, we demonstrate that the lattice plane bending of the commonly observed cross-hatch pattern is caused by dislocations. Our results show a strong local correlation between the strain field and composition distribution, indicating that the adatom surface diffusion during growth is driven by strain field fluctuations induced by the underlying dislocation network. Finally, it is revealed that a superficial chemical–mechanical polishing of cross-hatched surfaces does not lead to any significant change of tilt, composition, and strain variation compared to that of as-grown samples.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25871429</pmid><doi>10.1021/am508968b</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2015-05, Vol.7 (17), p.9031-9037
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1680189235
source American Chemical Society Journals
title Imaging Structure and Composition Homogeneity of 300 mm SiGe Virtual Substrates for Advanced CMOS Applications by Scanning X‑ray Diffraction Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Structure%20and%20Composition%20Homogeneity%20of%20300%20mm%20SiGe%20Virtual%20Substrates%20for%20Advanced%20CMOS%20Applications%20by%20Scanning%20X%E2%80%91ray%20Diffraction%20Microscopy&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zoellner,%20Marvin%20H&rft.date=2015-05-06&rft.volume=7&rft.issue=17&rft.spage=9031&rft.epage=9037&rft.pages=9031-9037&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am508968b&rft_dat=%3Cproquest_cross%3E1680189235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680189235&rft_id=info:pmid/25871429&rfr_iscdi=true