Employing temporal self-similarity across the entire time domain in computed tomography reconstruction

There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2015-06, Vol.373 (2043), p.20140389
Hauptverfasser: Kazantsev, D., Van Eyndhoven, G., Lionheart, W. R. B., Withers, P. J., Dobson, K. J., McDonald, S. A., Atwood, R., Lee, P. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2043
container_start_page 20140389
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 373
creator Kazantsev, D.
Van Eyndhoven, G.
Lionheart, W. R. B.
Withers, P. J.
Dobson, K. J.
McDonald, S. A.
Atwood, R.
Lee, P. D.
description There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques.
doi_str_mv 10.1098/rsta.2014.0389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680180922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680180922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-5556bcf799ec5c20ffc26348560df981fa91df19cbf41e38ff25ed27380b84903</originalsourceid><addsrcrecordid>eNp9kd9rFDEQxxdR7A999VHy6Mue-bmXvAilVCsUBK3gW8hlJ3epm82aZAvrX2-uV4sVFALJMJ_5zmS-TfOK4BXBSr5NuZgVxYSvMJPqSXNM-Jq0VHX0aX2zjrcCs29HzUnONxgT0gn6vDmiQrGKkOPGXYRpiIsft6hAmGIyA8owuDb74AeTfFmQsSnmjMoOEIzFJ0DFB0B9DMaPqB4bwzQX6FGJIW6TmXYLSmDjmEuabfFxfNE8c2bI8PL-Pm2-vr-4Pr9srz59-Hh-dtVawXhphRDdxrq1UmCFpdg5SzvGpehw75QkzijSO6LsxnECTDpHBfR0zSTeSK4wO23eHXSneROgt3Xe-iM9JR9MWnQ0Xj_OjH6nt_FWc0557VMF3twLpPhjhlx08NnCMJgR4pw16SQmEitKK7o6oHfrSeAe2hCs9-bovTl6b47em1MLXv853AP-240KsAOQ4lK3FK2HsuibOKexhv-W_f6_qs9frs9u2Zp5ijnTWDKCOcFM6J9-OkjVpPY5z6DvkMfyf3f7BbJ7w6E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680180922</pqid></control><display><type>article</type><title>Employing temporal self-similarity across the entire time domain in computed tomography reconstruction</title><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Kazantsev, D. ; Van Eyndhoven, G. ; Lionheart, W. R. B. ; Withers, P. J. ; Dobson, K. J. ; McDonald, S. A. ; Atwood, R. ; Lee, P. D.</creator><creatorcontrib>Kazantsev, D. ; Van Eyndhoven, G. ; Lionheart, W. R. B. ; Withers, P. J. ; Dobson, K. J. ; McDonald, S. A. ; Atwood, R. ; Lee, P. D.</creatorcontrib><description>There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2014.0389</identifier><identifier>PMID: 25939621</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Iterative Reconstruction ; Non-Local Means ; Spatial-Temporal Regularization ; Structural Prior ; Time Lapse Tomography</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2015-06, Vol.373 (2043), p.20140389</ispartof><rights>2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-5556bcf799ec5c20ffc26348560df981fa91df19cbf41e38ff25ed27380b84903</citedby><cites>FETCH-LOGICAL-c534t-5556bcf799ec5c20ffc26348560df981fa91df19cbf41e38ff25ed27380b84903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25939621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kazantsev, D.</creatorcontrib><creatorcontrib>Van Eyndhoven, G.</creatorcontrib><creatorcontrib>Lionheart, W. R. B.</creatorcontrib><creatorcontrib>Withers, P. J.</creatorcontrib><creatorcontrib>Dobson, K. J.</creatorcontrib><creatorcontrib>McDonald, S. A.</creatorcontrib><creatorcontrib>Atwood, R.</creatorcontrib><creatorcontrib>Lee, P. D.</creatorcontrib><title>Employing temporal self-similarity across the entire time domain in computed tomography reconstruction</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques.</description><subject>Iterative Reconstruction</subject><subject>Non-Local Means</subject><subject>Spatial-Temporal Regularization</subject><subject>Structural Prior</subject><subject>Time Lapse Tomography</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kd9rFDEQxxdR7A999VHy6Mue-bmXvAilVCsUBK3gW8hlJ3epm82aZAvrX2-uV4sVFALJMJ_5zmS-TfOK4BXBSr5NuZgVxYSvMJPqSXNM-Jq0VHX0aX2zjrcCs29HzUnONxgT0gn6vDmiQrGKkOPGXYRpiIsft6hAmGIyA8owuDb74AeTfFmQsSnmjMoOEIzFJ0DFB0B9DMaPqB4bwzQX6FGJIW6TmXYLSmDjmEuabfFxfNE8c2bI8PL-Pm2-vr-4Pr9srz59-Hh-dtVawXhphRDdxrq1UmCFpdg5SzvGpehw75QkzijSO6LsxnECTDpHBfR0zSTeSK4wO23eHXSneROgt3Xe-iM9JR9MWnQ0Xj_OjH6nt_FWc0557VMF3twLpPhjhlx08NnCMJgR4pw16SQmEitKK7o6oHfrSeAe2hCs9-bovTl6b47em1MLXv853AP-240KsAOQ4lK3FK2HsuibOKexhv-W_f6_qs9frs9u2Zp5ijnTWDKCOcFM6J9-OkjVpPY5z6DvkMfyf3f7BbJ7w6E</recordid><startdate>20150613</startdate><enddate>20150613</enddate><creator>Kazantsev, D.</creator><creator>Van Eyndhoven, G.</creator><creator>Lionheart, W. R. B.</creator><creator>Withers, P. J.</creator><creator>Dobson, K. J.</creator><creator>McDonald, S. A.</creator><creator>Atwood, R.</creator><creator>Lee, P. D.</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150613</creationdate><title>Employing temporal self-similarity across the entire time domain in computed tomography reconstruction</title><author>Kazantsev, D. ; Van Eyndhoven, G. ; Lionheart, W. R. B. ; Withers, P. J. ; Dobson, K. J. ; McDonald, S. A. ; Atwood, R. ; Lee, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-5556bcf799ec5c20ffc26348560df981fa91df19cbf41e38ff25ed27380b84903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Iterative Reconstruction</topic><topic>Non-Local Means</topic><topic>Spatial-Temporal Regularization</topic><topic>Structural Prior</topic><topic>Time Lapse Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazantsev, D.</creatorcontrib><creatorcontrib>Van Eyndhoven, G.</creatorcontrib><creatorcontrib>Lionheart, W. R. B.</creatorcontrib><creatorcontrib>Withers, P. J.</creatorcontrib><creatorcontrib>Dobson, K. J.</creatorcontrib><creatorcontrib>McDonald, S. A.</creatorcontrib><creatorcontrib>Atwood, R.</creatorcontrib><creatorcontrib>Lee, P. D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazantsev, D.</au><au>Van Eyndhoven, G.</au><au>Lionheart, W. R. B.</au><au>Withers, P. J.</au><au>Dobson, K. J.</au><au>McDonald, S. A.</au><au>Atwood, R.</au><au>Lee, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Employing temporal self-similarity across the entire time domain in computed tomography reconstruction</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2015-06-13</date><risdate>2015</risdate><volume>373</volume><issue>2043</issue><spage>20140389</spage><pages>20140389-</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>25939621</pmid><doi>10.1098/rsta.2014.0389</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2015-06, Vol.373 (2043), p.20140389
issn 1364-503X
1471-2962
language eng
recordid cdi_proquest_miscellaneous_1680180922
source Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR Mathematics & Statistics
subjects Iterative Reconstruction
Non-Local Means
Spatial-Temporal Regularization
Structural Prior
Time Lapse Tomography
title Employing temporal self-similarity across the entire time domain in computed tomography reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Employing%20temporal%20self-similarity%20across%20the%20entire%20time%20domain%20in%20computed%20tomography%20reconstruction&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Kazantsev,%20D.&rft.date=2015-06-13&rft.volume=373&rft.issue=2043&rft.spage=20140389&rft.pages=20140389-&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2014.0389&rft_dat=%3Cproquest_cross%3E1680180922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680180922&rft_id=info:pmid/25939621&rfr_iscdi=true