Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging

We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 1995-02, Vol.31 (2), p.373-386
Hauptverfasser: Lesch, Scott M., Strauss, David J., Rhoades, James D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 2
container_start_page 373
container_title Water resources research
container_volume 31
creator Lesch, Scott M.
Strauss, David J.
Rhoades, James D.
description We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost-effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys.
doi_str_mv 10.1029/94WR02179
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16789904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16789904</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3825-d91abfa521c1d971a457f85b27899af82fdbe0d421592e4962483341b204b3943</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEEkNhwQsgr5BYZOprHLOrRjBFKiBmqGZpOclJMHXi1E4E80o8ZR0FVWLB6my-7z-3LHtN8JZgqi4VPx0wJVI9yTZEcZ5LJdnTbIMxZzlhSj7PXsT4E2PCRSE32Z_jaCZrHBoDNLaerB-Qb1H01qFonB3sdEZztEOHwEE9Bd-bboDJ1sgOzbwKE9Q_Bns_Q9wiskXHKUXGhPwb2_sGXHyPrlDt-9EEG9de_ewmOzpAqRuYgAJ0AWJcFDM0Cb4LtksDvMyetcZFePW3XmS3Hz98313nN1_3n3ZXN7lhJRV5o4ipWiMoqUmjJDFcyLYUFZWlUqYtadtUgBtOiVAUuCooLxnjpKKYV0xxdpG9XXPH4JedJt3bWINzZgA_R02KJQkv4LsVrIOPMUCrx2B7E86aYL18Qz9-I7GXK_vLOjj_H9Snw-5QFKVIRr4a6ZTw-9Ew4U4XkkmhT1_2-tup_Kz2Bdcy8W9WvjVemy6dV98eiVICk4IpStkDLeumqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16789904</pqid></control><display><type>article</type><title>Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging</title><source>Wiley Online Library</source><creator>Lesch, Scott M. ; Strauss, David J. ; Rhoades, James D.</creator><creatorcontrib>Lesch, Scott M. ; Strauss, David J. ; Rhoades, James D. ; US Salinity Laboratory, ARS, USDA, Riverside, CA</creatorcontrib><description>We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost-effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/94WR02179</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>agricultural soils ; analisis del suelo ; analisis estadistico ; analyse de sol ; analyse statistique ; california ; californie ; conductividad electrica ; conductivite electrique ; electrical conductivity ; encuestas ; enquete ; forecasting ; measurement ; medicion ; mesure ; propiedades fisico quimicas suelo ; propriete physicochimique du sol ; salinidad ; salinite ; salinity ; soil chemicophysical properties ; soil testing ; sol agricole ; statistical analysis ; suelos agricolas ; surveys ; technique de prevision ; tecnicas de prediccion</subject><ispartof>Water resources research, 1995-02, Vol.31 (2), p.373-386</ispartof><rights>Copyright 1995 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3825-d91abfa521c1d971a457f85b27899af82fdbe0d421592e4962483341b204b3943</citedby><cites>FETCH-LOGICAL-a3825-d91abfa521c1d971a457f85b27899af82fdbe0d421592e4962483341b204b3943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F94WR02179$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F94WR02179$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lesch, Scott M.</creatorcontrib><creatorcontrib>Strauss, David J.</creatorcontrib><creatorcontrib>Rhoades, James D.</creatorcontrib><creatorcontrib>US Salinity Laboratory, ARS, USDA, Riverside, CA</creatorcontrib><title>Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost-effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys.</description><subject>agricultural soils</subject><subject>analisis del suelo</subject><subject>analisis estadistico</subject><subject>analyse de sol</subject><subject>analyse statistique</subject><subject>california</subject><subject>californie</subject><subject>conductividad electrica</subject><subject>conductivite electrique</subject><subject>electrical conductivity</subject><subject>encuestas</subject><subject>enquete</subject><subject>forecasting</subject><subject>measurement</subject><subject>medicion</subject><subject>mesure</subject><subject>propiedades fisico quimicas suelo</subject><subject>propriete physicochimique du sol</subject><subject>salinidad</subject><subject>salinite</subject><subject>salinity</subject><subject>soil chemicophysical properties</subject><subject>soil testing</subject><subject>sol agricole</subject><subject>statistical analysis</subject><subject>suelos agricolas</subject><subject>surveys</subject><subject>technique de prevision</subject><subject>tecnicas de prediccion</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhiMEEkNhwQsgr5BYZOprHLOrRjBFKiBmqGZpOclJMHXi1E4E80o8ZR0FVWLB6my-7z-3LHtN8JZgqi4VPx0wJVI9yTZEcZ5LJdnTbIMxZzlhSj7PXsT4E2PCRSE32Z_jaCZrHBoDNLaerB-Qb1H01qFonB3sdEZztEOHwEE9Bd-bboDJ1sgOzbwKE9Q_Bns_Q9wiskXHKUXGhPwb2_sGXHyPrlDt-9EEG9de_ewmOzpAqRuYgAJ0AWJcFDM0Cb4LtksDvMyetcZFePW3XmS3Hz98313nN1_3n3ZXN7lhJRV5o4ipWiMoqUmjJDFcyLYUFZWlUqYtadtUgBtOiVAUuCooLxnjpKKYV0xxdpG9XXPH4JedJt3bWINzZgA_R02KJQkv4LsVrIOPMUCrx2B7E86aYL18Qz9-I7GXK_vLOjj_H9Snw-5QFKVIRr4a6ZTw-9Ew4U4XkkmhT1_2-tup_Kz2Bdcy8W9WvjVemy6dV98eiVICk4IpStkDLeumqQ</recordid><startdate>199502</startdate><enddate>199502</enddate><creator>Lesch, Scott M.</creator><creator>Strauss, David J.</creator><creator>Rhoades, James D.</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>199502</creationdate><title>Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging</title><author>Lesch, Scott M. ; Strauss, David J. ; Rhoades, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3825-d91abfa521c1d971a457f85b27899af82fdbe0d421592e4962483341b204b3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>agricultural soils</topic><topic>analisis del suelo</topic><topic>analisis estadistico</topic><topic>analyse de sol</topic><topic>analyse statistique</topic><topic>california</topic><topic>californie</topic><topic>conductividad electrica</topic><topic>conductivite electrique</topic><topic>electrical conductivity</topic><topic>encuestas</topic><topic>enquete</topic><topic>forecasting</topic><topic>measurement</topic><topic>medicion</topic><topic>mesure</topic><topic>propiedades fisico quimicas suelo</topic><topic>propriete physicochimique du sol</topic><topic>salinidad</topic><topic>salinite</topic><topic>salinity</topic><topic>soil chemicophysical properties</topic><topic>soil testing</topic><topic>sol agricole</topic><topic>statistical analysis</topic><topic>suelos agricolas</topic><topic>surveys</topic><topic>technique de prevision</topic><topic>tecnicas de prediccion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesch, Scott M.</creatorcontrib><creatorcontrib>Strauss, David J.</creatorcontrib><creatorcontrib>Rhoades, James D.</creatorcontrib><creatorcontrib>US Salinity Laboratory, ARS, USDA, Riverside, CA</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesch, Scott M.</au><au>Strauss, David J.</au><au>Rhoades, James D.</au><aucorp>US Salinity Laboratory, ARS, USDA, Riverside, CA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1995-02</date><risdate>1995</risdate><volume>31</volume><issue>2</issue><spage>373</spage><epage>386</epage><pages>373-386</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost-effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/94WR02179</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 1995-02, Vol.31 (2), p.373-386
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_16789904
source Wiley Online Library
subjects agricultural soils
analisis del suelo
analisis estadistico
analyse de sol
analyse statistique
california
californie
conductividad electrica
conductivite electrique
electrical conductivity
encuestas
enquete
forecasting
measurement
medicion
mesure
propiedades fisico quimicas suelo
propriete physicochimique du sol
salinidad
salinite
salinity
soil chemicophysical properties
soil testing
sol agricole
statistical analysis
suelos agricolas
surveys
technique de prevision
tecnicas de prediccion
title Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20prediction%20of%20soil%20salinity%20using%20electromagnetic%20induction%20techniques.%201.%20Statistical%20prediction%20models:%20A%20comparison%20of%20multiple%20linear%20regression%20and%20cokriging&rft.jtitle=Water%20resources%20research&rft.au=Lesch,%20Scott%20M.&rft.aucorp=US%20Salinity%20Laboratory,%20ARS,%20USDA,%20Riverside,%20CA&rft.date=1995-02&rft.volume=31&rft.issue=2&rft.spage=373&rft.epage=386&rft.pages=373-386&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/94WR02179&rft_dat=%3Cproquest_cross%3E16789904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16789904&rft_id=info:pmid/&rfr_iscdi=true