Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging
We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR...
Gespeichert in:
Veröffentlicht in: | Water resources research 1995-02, Vol.31 (2), p.373-386 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 2 |
container_start_page | 373 |
container_title | Water resources research |
container_volume | 31 |
creator | Lesch, Scott M. Strauss, David J. Rhoades, James D. |
description | We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost-effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys. |
doi_str_mv | 10.1029/94WR02179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16789904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16789904</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3825-d91abfa521c1d971a457f85b27899af82fdbe0d421592e4962483341b204b3943</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEEkNhwQsgr5BYZOprHLOrRjBFKiBmqGZpOclJMHXi1E4E80o8ZR0FVWLB6my-7z-3LHtN8JZgqi4VPx0wJVI9yTZEcZ5LJdnTbIMxZzlhSj7PXsT4E2PCRSE32Z_jaCZrHBoDNLaerB-Qb1H01qFonB3sdEZztEOHwEE9Bd-bboDJ1sgOzbwKE9Q_Bns_Q9wiskXHKUXGhPwb2_sGXHyPrlDt-9EEG9de_ewmOzpAqRuYgAJ0AWJcFDM0Cb4LtksDvMyetcZFePW3XmS3Hz98313nN1_3n3ZXN7lhJRV5o4ipWiMoqUmjJDFcyLYUFZWlUqYtadtUgBtOiVAUuCooLxnjpKKYV0xxdpG9XXPH4JedJt3bWINzZgA_R02KJQkv4LsVrIOPMUCrx2B7E86aYL18Qz9-I7GXK_vLOjj_H9Snw-5QFKVIRr4a6ZTw-9Ew4U4XkkmhT1_2-tup_Kz2Bdcy8W9WvjVemy6dV98eiVICk4IpStkDLeumqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16789904</pqid></control><display><type>article</type><title>Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging</title><source>Wiley Online Library</source><creator>Lesch, Scott M. ; Strauss, David J. ; Rhoades, James D.</creator><creatorcontrib>Lesch, Scott M. ; Strauss, David J. ; Rhoades, James D. ; US Salinity Laboratory, ARS, USDA, Riverside, CA</creatorcontrib><description>We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost-effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/94WR02179</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>agricultural soils ; analisis del suelo ; analisis estadistico ; analyse de sol ; analyse statistique ; california ; californie ; conductividad electrica ; conductivite electrique ; electrical conductivity ; encuestas ; enquete ; forecasting ; measurement ; medicion ; mesure ; propiedades fisico quimicas suelo ; propriete physicochimique du sol ; salinidad ; salinite ; salinity ; soil chemicophysical properties ; soil testing ; sol agricole ; statistical analysis ; suelos agricolas ; surveys ; technique de prevision ; tecnicas de prediccion</subject><ispartof>Water resources research, 1995-02, Vol.31 (2), p.373-386</ispartof><rights>Copyright 1995 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3825-d91abfa521c1d971a457f85b27899af82fdbe0d421592e4962483341b204b3943</citedby><cites>FETCH-LOGICAL-a3825-d91abfa521c1d971a457f85b27899af82fdbe0d421592e4962483341b204b3943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F94WR02179$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F94WR02179$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lesch, Scott M.</creatorcontrib><creatorcontrib>Strauss, David J.</creatorcontrib><creatorcontrib>Rhoades, James D.</creatorcontrib><creatorcontrib>US Salinity Laboratory, ARS, USDA, Riverside, CA</creatorcontrib><title>Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost-effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys.</description><subject>agricultural soils</subject><subject>analisis del suelo</subject><subject>analisis estadistico</subject><subject>analyse de sol</subject><subject>analyse statistique</subject><subject>california</subject><subject>californie</subject><subject>conductividad electrica</subject><subject>conductivite electrique</subject><subject>electrical conductivity</subject><subject>encuestas</subject><subject>enquete</subject><subject>forecasting</subject><subject>measurement</subject><subject>medicion</subject><subject>mesure</subject><subject>propiedades fisico quimicas suelo</subject><subject>propriete physicochimique du sol</subject><subject>salinidad</subject><subject>salinite</subject><subject>salinity</subject><subject>soil chemicophysical properties</subject><subject>soil testing</subject><subject>sol agricole</subject><subject>statistical analysis</subject><subject>suelos agricolas</subject><subject>surveys</subject><subject>technique de prevision</subject><subject>tecnicas de prediccion</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhiMEEkNhwQsgr5BYZOprHLOrRjBFKiBmqGZpOclJMHXi1E4E80o8ZR0FVWLB6my-7z-3LHtN8JZgqi4VPx0wJVI9yTZEcZ5LJdnTbIMxZzlhSj7PXsT4E2PCRSE32Z_jaCZrHBoDNLaerB-Qb1H01qFonB3sdEZztEOHwEE9Bd-bboDJ1sgOzbwKE9Q_Bns_Q9wiskXHKUXGhPwb2_sGXHyPrlDt-9EEG9de_ewmOzpAqRuYgAJ0AWJcFDM0Cb4LtksDvMyetcZFePW3XmS3Hz98313nN1_3n3ZXN7lhJRV5o4ipWiMoqUmjJDFcyLYUFZWlUqYtadtUgBtOiVAUuCooLxnjpKKYV0xxdpG9XXPH4JedJt3bWINzZgA_R02KJQkv4LsVrIOPMUCrx2B7E86aYL18Qz9-I7GXK_vLOjj_H9Snw-5QFKVIRr4a6ZTw-9Ew4U4XkkmhT1_2-tup_Kz2Bdcy8W9WvjVemy6dV98eiVICk4IpStkDLeumqQ</recordid><startdate>199502</startdate><enddate>199502</enddate><creator>Lesch, Scott M.</creator><creator>Strauss, David J.</creator><creator>Rhoades, James D.</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>199502</creationdate><title>Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging</title><author>Lesch, Scott M. ; Strauss, David J. ; Rhoades, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3825-d91abfa521c1d971a457f85b27899af82fdbe0d421592e4962483341b204b3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>agricultural soils</topic><topic>analisis del suelo</topic><topic>analisis estadistico</topic><topic>analyse de sol</topic><topic>analyse statistique</topic><topic>california</topic><topic>californie</topic><topic>conductividad electrica</topic><topic>conductivite electrique</topic><topic>electrical conductivity</topic><topic>encuestas</topic><topic>enquete</topic><topic>forecasting</topic><topic>measurement</topic><topic>medicion</topic><topic>mesure</topic><topic>propiedades fisico quimicas suelo</topic><topic>propriete physicochimique du sol</topic><topic>salinidad</topic><topic>salinite</topic><topic>salinity</topic><topic>soil chemicophysical properties</topic><topic>soil testing</topic><topic>sol agricole</topic><topic>statistical analysis</topic><topic>suelos agricolas</topic><topic>surveys</topic><topic>technique de prevision</topic><topic>tecnicas de prediccion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesch, Scott M.</creatorcontrib><creatorcontrib>Strauss, David J.</creatorcontrib><creatorcontrib>Rhoades, James D.</creatorcontrib><creatorcontrib>US Salinity Laboratory, ARS, USDA, Riverside, CA</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesch, Scott M.</au><au>Strauss, David J.</au><au>Rhoades, James D.</au><aucorp>US Salinity Laboratory, ARS, USDA, Riverside, CA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1995-02</date><risdate>1995</risdate><volume>31</volume><issue>2</issue><spage>373</spage><epage>386</epage><pages>373-386</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We describe a regression-based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost-effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/94WR02179</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 1995-02, Vol.31 (2), p.373-386 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_16789904 |
source | Wiley Online Library |
subjects | agricultural soils analisis del suelo analisis estadistico analyse de sol analyse statistique california californie conductividad electrica conductivite electrique electrical conductivity encuestas enquete forecasting measurement medicion mesure propiedades fisico quimicas suelo propriete physicochimique du sol salinidad salinite salinity soil chemicophysical properties soil testing sol agricole statistical analysis suelos agricolas surveys technique de prevision tecnicas de prediccion |
title | Spatial prediction of soil salinity using electromagnetic induction techniques. 1. Statistical prediction models: A comparison of multiple linear regression and cokriging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20prediction%20of%20soil%20salinity%20using%20electromagnetic%20induction%20techniques.%201.%20Statistical%20prediction%20models:%20A%20comparison%20of%20multiple%20linear%20regression%20and%20cokriging&rft.jtitle=Water%20resources%20research&rft.au=Lesch,%20Scott%20M.&rft.aucorp=US%20Salinity%20Laboratory,%20ARS,%20USDA,%20Riverside,%20CA&rft.date=1995-02&rft.volume=31&rft.issue=2&rft.spage=373&rft.epage=386&rft.pages=373-386&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/94WR02179&rft_dat=%3Cproquest_cross%3E16789904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16789904&rft_id=info:pmid/&rfr_iscdi=true |