Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection

A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2013-03, Vol.543, p.129-132
Hauptverfasser: Saberkari, A., Hosseini-Golgoo, Seyed Mohsen, Rahbarpour, S., Bozorgi, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue
container_start_page 129
container_title Key engineering materials
container_volume 543
creator Saberkari, A.
Hosseini-Golgoo, Seyed Mohsen
Rahbarpour, S.
Bozorgi, H.
description A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance profiles of the sensing layer which are considered as the input and the output of the defined system, respectively. In this way, five systems corresponding to five steps of the system input can be distinguished. Next, each system under the influence of the examined target gases is modeled with neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems and weights of the trained networks utilized as the features of the sensor in presence of target gas. Mapping these feature vectors using linear discriminant analysis showed successful classification of all target gases.
doi_str_mv 10.4028/www.scientific.net/KEM.543.129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678017496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1678017496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bb9a6ddc76b0a4dda7ddb9e292fff4e7e6f5490c9972253dec8a25d43291c41f3</originalsourceid><addsrcrecordid>eNqNkU1rGzEQQJfQQtw0_0Gn0MtuJK32Q5dS4-aLOAmkzlnI0qiRWUuupMWxIf-9Mi70mtPM4c07zCuKC4Irhml_ud1uq6gsuGSNVZWDdHl_9VA1rK4I5SfFhLQtLXnHm095x6QueU_b0-JLjCuMa9KTZlK8T50cdnvrfqP0CugZ4sa7CMgbJNEC1hsIMo0B0IPX4yATaLSwrnx6sxrQjYzoF7joA3qJB8XcKzmguXUgA3qEMfjyetzvd4drGJDJ4OHmJyRQyXr3tfhs5BDh_N88K16urxaz23L-dHM3m85LVXOWyuWSy1Zr1bVLLJnWstN6yYFyaoxh0EFrGsax4ryjtKk1qF7SRrOacqIYMfVZ8e3o3QT_Z4SYxNpGBcMgHfgxCtJ2PSYd4-0HUIpxz1nNM_r9iKrgYwxgxCbYtQw7QbA4JBI5kfifSOREIicSOZHIibLgx1GQgnQx_-RVrPwYcpH4UcVfZ7-klg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620089439</pqid></control><display><type>article</type><title>Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection</title><source>Scientific.net Journals</source><creator>Saberkari, A. ; Hosseini-Golgoo, Seyed Mohsen ; Rahbarpour, S. ; Bozorgi, H.</creator><creatorcontrib>Saberkari, A. ; Hosseini-Golgoo, Seyed Mohsen ; Rahbarpour, S. ; Bozorgi, H.</creatorcontrib><description>A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance profiles of the sensing layer which are considered as the input and the output of the defined system, respectively. In this way, five systems corresponding to five steps of the system input can be distinguished. Next, each system under the influence of the examined target gases is modeled with neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems and weights of the trained networks utilized as the features of the sensor in presence of target gas. Mapping these feature vectors using linear discriminant analysis showed successful classification of all target gases.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.543.129</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Algorithms ; Electric potential ; Ethyl alcohol ; Fuzzy systems ; Gas sensors ; Methyl alcohol ; Neural networks ; Sensors</subject><ispartof>Key engineering materials, 2013-03, Vol.543, p.129-132</ispartof><rights>2013 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-bb9a6ddc76b0a4dda7ddb9e292fff4e7e6f5490c9972253dec8a25d43291c41f3</citedby><cites>FETCH-LOGICAL-c394t-bb9a6ddc76b0a4dda7ddb9e292fff4e7e6f5490c9972253dec8a25d43291c41f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2253?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Saberkari, A.</creatorcontrib><creatorcontrib>Hosseini-Golgoo, Seyed Mohsen</creatorcontrib><creatorcontrib>Rahbarpour, S.</creatorcontrib><creatorcontrib>Bozorgi, H.</creatorcontrib><title>Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection</title><title>Key engineering materials</title><description>A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance profiles of the sensing layer which are considered as the input and the output of the defined system, respectively. In this way, five systems corresponding to five steps of the system input can be distinguished. Next, each system under the influence of the examined target gases is modeled with neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems and weights of the trained networks utilized as the features of the sensor in presence of target gas. Mapping these feature vectors using linear discriminant analysis showed successful classification of all target gases.</description><subject>Algorithms</subject><subject>Electric potential</subject><subject>Ethyl alcohol</subject><subject>Fuzzy systems</subject><subject>Gas sensors</subject><subject>Methyl alcohol</subject><subject>Neural networks</subject><subject>Sensors</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rGzEQQJfQQtw0_0Gn0MtuJK32Q5dS4-aLOAmkzlnI0qiRWUuupMWxIf-9Mi70mtPM4c07zCuKC4Irhml_ud1uq6gsuGSNVZWDdHl_9VA1rK4I5SfFhLQtLXnHm095x6QueU_b0-JLjCuMa9KTZlK8T50cdnvrfqP0CugZ4sa7CMgbJNEC1hsIMo0B0IPX4yATaLSwrnx6sxrQjYzoF7joA3qJB8XcKzmguXUgA3qEMfjyetzvd4drGJDJ4OHmJyRQyXr3tfhs5BDh_N88K16urxaz23L-dHM3m85LVXOWyuWSy1Zr1bVLLJnWstN6yYFyaoxh0EFrGsax4ryjtKk1qF7SRrOacqIYMfVZ8e3o3QT_Z4SYxNpGBcMgHfgxCtJ2PSYd4-0HUIpxz1nNM_r9iKrgYwxgxCbYtQw7QbA4JBI5kfifSOREIicSOZHIibLgx1GQgnQx_-RVrPwYcpH4UcVfZ7-klg</recordid><startdate>20130311</startdate><enddate>20130311</enddate><creator>Saberkari, A.</creator><creator>Hosseini-Golgoo, Seyed Mohsen</creator><creator>Rahbarpour, S.</creator><creator>Bozorgi, H.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130311</creationdate><title>Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection</title><author>Saberkari, A. ; Hosseini-Golgoo, Seyed Mohsen ; Rahbarpour, S. ; Bozorgi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bb9a6ddc76b0a4dda7ddb9e292fff4e7e6f5490c9972253dec8a25d43291c41f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Electric potential</topic><topic>Ethyl alcohol</topic><topic>Fuzzy systems</topic><topic>Gas sensors</topic><topic>Methyl alcohol</topic><topic>Neural networks</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saberkari, A.</creatorcontrib><creatorcontrib>Hosseini-Golgoo, Seyed Mohsen</creatorcontrib><creatorcontrib>Rahbarpour, S.</creatorcontrib><creatorcontrib>Bozorgi, H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saberkari, A.</au><au>Hosseini-Golgoo, Seyed Mohsen</au><au>Rahbarpour, S.</au><au>Bozorgi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection</atitle><jtitle>Key engineering materials</jtitle><date>2013-03-11</date><risdate>2013</risdate><volume>543</volume><spage>129</spage><epage>132</epage><pages>129-132</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance profiles of the sensing layer which are considered as the input and the output of the defined system, respectively. In this way, five systems corresponding to five steps of the system input can be distinguished. Next, each system under the influence of the examined target gases is modeled with neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems and weights of the trained networks utilized as the features of the sensor in presence of target gas. Mapping these feature vectors using linear discriminant analysis showed successful classification of all target gases.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.543.129</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2013-03, Vol.543, p.129-132
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_1678017496
source Scientific.net Journals
subjects Algorithms
Electric potential
Ethyl alcohol
Fuzzy systems
Gas sensors
Methyl alcohol
Neural networks
Sensors
title Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Response%20of%20a%20Temperature%20Modulated%20Tin-Oxide%20Gas%20Sensor%20Using%20Local%20Linear%20Neuro-Fuzzy%20Model%20for%20Gas%20Detection&rft.jtitle=Key%20engineering%20materials&rft.au=Saberkari,%20A.&rft.date=2013-03-11&rft.volume=543&rft.spage=129&rft.epage=132&rft.pages=129-132&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.543.129&rft_dat=%3Cproquest_cross%3E1678017496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620089439&rft_id=info:pmid/&rfr_iscdi=true