Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection
A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modu...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2013-03, Vol.543, p.129-132 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | |
container_start_page | 129 |
container_title | Key engineering materials |
container_volume | 543 |
creator | Saberkari, A. Hosseini-Golgoo, Seyed Mohsen Rahbarpour, S. Bozorgi, H. |
description | A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance profiles of the sensing layer which are considered as the input and the output of the defined system, respectively. In this way, five systems corresponding to five steps of the system input can be distinguished. Next, each system under the influence of the examined target gases is modeled with neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems and weights of the trained networks utilized as the features of the sensor in presence of target gas. Mapping these feature vectors using linear discriminant analysis showed successful classification of all target gases. |
doi_str_mv | 10.4028/www.scientific.net/KEM.543.129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678017496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1678017496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bb9a6ddc76b0a4dda7ddb9e292fff4e7e6f5490c9972253dec8a25d43291c41f3</originalsourceid><addsrcrecordid>eNqNkU1rGzEQQJfQQtw0_0Gn0MtuJK32Q5dS4-aLOAmkzlnI0qiRWUuupMWxIf-9Mi70mtPM4c07zCuKC4Irhml_ud1uq6gsuGSNVZWDdHl_9VA1rK4I5SfFhLQtLXnHm095x6QueU_b0-JLjCuMa9KTZlK8T50cdnvrfqP0CugZ4sa7CMgbJNEC1hsIMo0B0IPX4yATaLSwrnx6sxrQjYzoF7joA3qJB8XcKzmguXUgA3qEMfjyetzvd4drGJDJ4OHmJyRQyXr3tfhs5BDh_N88K16urxaz23L-dHM3m85LVXOWyuWSy1Zr1bVLLJnWstN6yYFyaoxh0EFrGsax4ryjtKk1qF7SRrOacqIYMfVZ8e3o3QT_Z4SYxNpGBcMgHfgxCtJ2PSYd4-0HUIpxz1nNM_r9iKrgYwxgxCbYtQw7QbA4JBI5kfifSOREIicSOZHIibLgx1GQgnQx_-RVrPwYcpH4UcVfZ7-klg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620089439</pqid></control><display><type>article</type><title>Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection</title><source>Scientific.net Journals</source><creator>Saberkari, A. ; Hosseini-Golgoo, Seyed Mohsen ; Rahbarpour, S. ; Bozorgi, H.</creator><creatorcontrib>Saberkari, A. ; Hosseini-Golgoo, Seyed Mohsen ; Rahbarpour, S. ; Bozorgi, H.</creatorcontrib><description>A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance profiles of the sensing layer which are considered as the input and the output of the defined system, respectively. In this way, five systems corresponding to five steps of the system input can be distinguished. Next, each system under the influence of the examined target gases is modeled with neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems and weights of the trained networks utilized as the features of the sensor in presence of target gas. Mapping these feature vectors using linear discriminant analysis showed successful classification of all target gases.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.543.129</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Algorithms ; Electric potential ; Ethyl alcohol ; Fuzzy systems ; Gas sensors ; Methyl alcohol ; Neural networks ; Sensors</subject><ispartof>Key engineering materials, 2013-03, Vol.543, p.129-132</ispartof><rights>2013 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-bb9a6ddc76b0a4dda7ddb9e292fff4e7e6f5490c9972253dec8a25d43291c41f3</citedby><cites>FETCH-LOGICAL-c394t-bb9a6ddc76b0a4dda7ddb9e292fff4e7e6f5490c9972253dec8a25d43291c41f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2253?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Saberkari, A.</creatorcontrib><creatorcontrib>Hosseini-Golgoo, Seyed Mohsen</creatorcontrib><creatorcontrib>Rahbarpour, S.</creatorcontrib><creatorcontrib>Bozorgi, H.</creatorcontrib><title>Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection</title><title>Key engineering materials</title><description>A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance profiles of the sensing layer which are considered as the input and the output of the defined system, respectively. In this way, five systems corresponding to five steps of the system input can be distinguished. Next, each system under the influence of the examined target gases is modeled with neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems and weights of the trained networks utilized as the features of the sensor in presence of target gas. Mapping these feature vectors using linear discriminant analysis showed successful classification of all target gases.</description><subject>Algorithms</subject><subject>Electric potential</subject><subject>Ethyl alcohol</subject><subject>Fuzzy systems</subject><subject>Gas sensors</subject><subject>Methyl alcohol</subject><subject>Neural networks</subject><subject>Sensors</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rGzEQQJfQQtw0_0Gn0MtuJK32Q5dS4-aLOAmkzlnI0qiRWUuupMWxIf-9Mi70mtPM4c07zCuKC4Irhml_ud1uq6gsuGSNVZWDdHl_9VA1rK4I5SfFhLQtLXnHm095x6QueU_b0-JLjCuMa9KTZlK8T50cdnvrfqP0CugZ4sa7CMgbJNEC1hsIMo0B0IPX4yATaLSwrnx6sxrQjYzoF7joA3qJB8XcKzmguXUgA3qEMfjyetzvd4drGJDJ4OHmJyRQyXr3tfhs5BDh_N88K16urxaz23L-dHM3m85LVXOWyuWSy1Zr1bVLLJnWstN6yYFyaoxh0EFrGsax4ryjtKk1qF7SRrOacqIYMfVZ8e3o3QT_Z4SYxNpGBcMgHfgxCtJ2PSYd4-0HUIpxz1nNM_r9iKrgYwxgxCbYtQw7QbA4JBI5kfifSOREIicSOZHIibLgx1GQgnQx_-RVrPwYcpH4UcVfZ7-klg</recordid><startdate>20130311</startdate><enddate>20130311</enddate><creator>Saberkari, A.</creator><creator>Hosseini-Golgoo, Seyed Mohsen</creator><creator>Rahbarpour, S.</creator><creator>Bozorgi, H.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130311</creationdate><title>Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection</title><author>Saberkari, A. ; Hosseini-Golgoo, Seyed Mohsen ; Rahbarpour, S. ; Bozorgi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bb9a6ddc76b0a4dda7ddb9e292fff4e7e6f5490c9972253dec8a25d43291c41f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Electric potential</topic><topic>Ethyl alcohol</topic><topic>Fuzzy systems</topic><topic>Gas sensors</topic><topic>Methyl alcohol</topic><topic>Neural networks</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saberkari, A.</creatorcontrib><creatorcontrib>Hosseini-Golgoo, Seyed Mohsen</creatorcontrib><creatorcontrib>Rahbarpour, S.</creatorcontrib><creatorcontrib>Bozorgi, H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saberkari, A.</au><au>Hosseini-Golgoo, Seyed Mohsen</au><au>Rahbarpour, S.</au><au>Bozorgi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection</atitle><jtitle>Key engineering materials</jtitle><date>2013-03-11</date><risdate>2013</risdate><volume>543</volume><spage>129</spage><epage>132</epage><pages>129-132</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>A resistive gas sensor (RGS) under temperature modulation regime is considered as a system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance profiles of the sensing layer which are considered as the input and the output of the defined system, respectively. In this way, five systems corresponding to five steps of the system input can be distinguished. Next, each system under the influence of the examined target gases is modeled with neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems and weights of the trained networks utilized as the features of the sensor in presence of target gas. Mapping these feature vectors using linear discriminant analysis showed successful classification of all target gases.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.543.129</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2013-03, Vol.543, p.129-132 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_miscellaneous_1678017496 |
source | Scientific.net Journals |
subjects | Algorithms Electric potential Ethyl alcohol Fuzzy systems Gas sensors Methyl alcohol Neural networks Sensors |
title | Analyzing the Response of a Temperature Modulated Tin-Oxide Gas Sensor Using Local Linear Neuro-Fuzzy Model for Gas Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Response%20of%20a%20Temperature%20Modulated%20Tin-Oxide%20Gas%20Sensor%20Using%20Local%20Linear%20Neuro-Fuzzy%20Model%20for%20Gas%20Detection&rft.jtitle=Key%20engineering%20materials&rft.au=Saberkari,%20A.&rft.date=2013-03-11&rft.volume=543&rft.spage=129&rft.epage=132&rft.pages=129-132&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.543.129&rft_dat=%3Cproquest_cross%3E1678017496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620089439&rft_id=info:pmid/&rfr_iscdi=true |