Application of carbon materials in redox flow batteries
The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the R...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-05, Vol.253, p.150-166 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | |
container_start_page | 150 |
container_title | Journal of power sources |
container_volume | 253 |
creator | Chakrabarti, M.H. Brandon, N.P. Hajimolana, S.A. Tariq, F. Yufit, V. Hashim, M.A. Hussain, M.A. Low, C.T.J. Aravind, P.V. |
description | The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology.
•A comprehensive coverage on carbon materials used in redox flow batteries is given.•The influence of nanotechnology and graphene is discussed in detail.•The importance of studying RFB degradation mechanisms is emphasised. |
doi_str_mv | 10.1016/j.jpowsour.2013.12.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678012828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313020065</els_id><sourcerecordid>1551077539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-527acd43c67cd12379407c498269d08552fa7dccce94d36402842c4020f94a5a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFb_guQieEmc_cpubpbiFxS86HnZTjawJc3G3dTqvzel1Ws9zcA8M_PyEHJNoaBAy7tVserDNoVNLBhQXlBWANcnZEK14jlTUp6SCXClc6UkPycXKa0AgFIFE6Jmfd96tIMPXRaaDG1cjt3aDi5626bMd1l0dfjKmjZss6UddgOXLslZM47d1aFOyfvjw9v8OV-8Pr3MZ4schWZDLpmyWAuOpcKaMq4qAQpFpVlZ1aClZI1VNSK6StS8FMC0YDgWaCphpeVTcru_28fwsXFpMGuf0LWt7VzYJENLpYEyzfR_UFqCFqo8jkpJYWerGtFyj2IMKUXXmD76tY3fhoLZ-Tcr8-vf7Pwbyszof1y8OfywCW3bRNuhT3_bY2QJ-9j3e86NGj-9iyahdx262keHg6mDP_bqB1nonRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551077539</pqid></control><display><type>article</type><title>Application of carbon materials in redox flow batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Chakrabarti, M.H. ; Brandon, N.P. ; Hajimolana, S.A. ; Tariq, F. ; Yufit, V. ; Hashim, M.A. ; Hussain, M.A. ; Low, C.T.J. ; Aravind, P.V.</creator><creatorcontrib>Chakrabarti, M.H. ; Brandon, N.P. ; Hajimolana, S.A. ; Tariq, F. ; Yufit, V. ; Hashim, M.A. ; Hussain, M.A. ; Low, C.T.J. ; Aravind, P.V.</creatorcontrib><description>The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology.
•A comprehensive coverage on carbon materials used in redox flow batteries is given.•The influence of nanotechnology and graphene is discussed in detail.•The importance of studying RFB degradation mechanisms is emphasised.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.12.038</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Carbon ; Carbon-based electrodes ; Cloth ; Corrosion ; Direct energy conversion and energy accumulation ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrical resistivity ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; Failure ; Graphene ; Nanostructure ; Nanotechnology ; Redox flow battery ; X-ray tomography</subject><ispartof>Journal of power sources, 2014-05, Vol.253, p.150-166</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-527acd43c67cd12379407c498269d08552fa7dccce94d36402842c4020f94a5a3</citedby><cites>FETCH-LOGICAL-c482t-527acd43c67cd12379407c498269d08552fa7dccce94d36402842c4020f94a5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775313020065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28250828$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakrabarti, M.H.</creatorcontrib><creatorcontrib>Brandon, N.P.</creatorcontrib><creatorcontrib>Hajimolana, S.A.</creatorcontrib><creatorcontrib>Tariq, F.</creatorcontrib><creatorcontrib>Yufit, V.</creatorcontrib><creatorcontrib>Hashim, M.A.</creatorcontrib><creatorcontrib>Hussain, M.A.</creatorcontrib><creatorcontrib>Low, C.T.J.</creatorcontrib><creatorcontrib>Aravind, P.V.</creatorcontrib><title>Application of carbon materials in redox flow batteries</title><title>Journal of power sources</title><description>The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology.
•A comprehensive coverage on carbon materials used in redox flow batteries is given.•The influence of nanotechnology and graphene is discussed in detail.•The importance of studying RFB degradation mechanisms is emphasised.</description><subject>Applied sciences</subject><subject>Carbon</subject><subject>Carbon-based electrodes</subject><subject>Cloth</subject><subject>Corrosion</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrical resistivity</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Graphene</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Redox flow battery</subject><subject>X-ray tomography</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFb_guQieEmc_cpubpbiFxS86HnZTjawJc3G3dTqvzel1Ws9zcA8M_PyEHJNoaBAy7tVserDNoVNLBhQXlBWANcnZEK14jlTUp6SCXClc6UkPycXKa0AgFIFE6Jmfd96tIMPXRaaDG1cjt3aDi5626bMd1l0dfjKmjZss6UddgOXLslZM47d1aFOyfvjw9v8OV-8Pr3MZ4schWZDLpmyWAuOpcKaMq4qAQpFpVlZ1aClZI1VNSK6StS8FMC0YDgWaCphpeVTcru_28fwsXFpMGuf0LWt7VzYJENLpYEyzfR_UFqCFqo8jkpJYWerGtFyj2IMKUXXmD76tY3fhoLZ-Tcr8-vf7Pwbyszof1y8OfywCW3bRNuhT3_bY2QJ-9j3e86NGj-9iyahdx262keHg6mDP_bqB1nonRQ</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Chakrabarti, M.H.</creator><creator>Brandon, N.P.</creator><creator>Hajimolana, S.A.</creator><creator>Tariq, F.</creator><creator>Yufit, V.</creator><creator>Hashim, M.A.</creator><creator>Hussain, M.A.</creator><creator>Low, C.T.J.</creator><creator>Aravind, P.V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Application of carbon materials in redox flow batteries</title><author>Chakrabarti, M.H. ; Brandon, N.P. ; Hajimolana, S.A. ; Tariq, F. ; Yufit, V. ; Hashim, M.A. ; Hussain, M.A. ; Low, C.T.J. ; Aravind, P.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-527acd43c67cd12379407c498269d08552fa7dccce94d36402842c4020f94a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Carbon</topic><topic>Carbon-based electrodes</topic><topic>Cloth</topic><topic>Corrosion</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrical resistivity</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Graphene</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Redox flow battery</topic><topic>X-ray tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, M.H.</creatorcontrib><creatorcontrib>Brandon, N.P.</creatorcontrib><creatorcontrib>Hajimolana, S.A.</creatorcontrib><creatorcontrib>Tariq, F.</creatorcontrib><creatorcontrib>Yufit, V.</creatorcontrib><creatorcontrib>Hashim, M.A.</creatorcontrib><creatorcontrib>Hussain, M.A.</creatorcontrib><creatorcontrib>Low, C.T.J.</creatorcontrib><creatorcontrib>Aravind, P.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, M.H.</au><au>Brandon, N.P.</au><au>Hajimolana, S.A.</au><au>Tariq, F.</au><au>Yufit, V.</au><au>Hashim, M.A.</au><au>Hussain, M.A.</au><au>Low, C.T.J.</au><au>Aravind, P.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of carbon materials in redox flow batteries</atitle><jtitle>Journal of power sources</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>253</volume><spage>150</spage><epage>166</epage><pages>150-166</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology.
•A comprehensive coverage on carbon materials used in redox flow batteries is given.•The influence of nanotechnology and graphene is discussed in detail.•The importance of studying RFB degradation mechanisms is emphasised.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.12.038</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-05, Vol.253, p.150-166 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1678012828 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Carbon Carbon-based electrodes Cloth Corrosion Direct energy conversion and energy accumulation Electric batteries Electrical engineering. Electrical power engineering Electrical power engineering Electrical resistivity Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Exact sciences and technology Failure Graphene Nanostructure Nanotechnology Redox flow battery X-ray tomography |
title | Application of carbon materials in redox flow batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20carbon%20materials%20in%20redox%20flow%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Chakrabarti,%20M.H.&rft.date=2014-05-01&rft.volume=253&rft.spage=150&rft.epage=166&rft.pages=150-166&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.12.038&rft_dat=%3Cproquest_cross%3E1551077539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551077539&rft_id=info:pmid/&rft_els_id=S0378775313020065&rfr_iscdi=true |