Application of carbon materials in redox flow batteries

The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2014-05, Vol.253, p.150-166
Hauptverfasser: Chakrabarti, M.H., Brandon, N.P., Hajimolana, S.A., Tariq, F., Yufit, V., Hashim, M.A., Hussain, M.A., Low, C.T.J., Aravind, P.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue
container_start_page 150
container_title Journal of power sources
container_volume 253
creator Chakrabarti, M.H.
Brandon, N.P.
Hajimolana, S.A.
Tariq, F.
Yufit, V.
Hashim, M.A.
Hussain, M.A.
Low, C.T.J.
Aravind, P.V.
description The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology. •A comprehensive coverage on carbon materials used in redox flow batteries is given.•The influence of nanotechnology and graphene is discussed in detail.•The importance of studying RFB degradation mechanisms is emphasised.
doi_str_mv 10.1016/j.jpowsour.2013.12.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678012828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313020065</els_id><sourcerecordid>1551077539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-527acd43c67cd12379407c498269d08552fa7dccce94d36402842c4020f94a5a3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFb_guQieEmc_cpubpbiFxS86HnZTjawJc3G3dTqvzel1Ws9zcA8M_PyEHJNoaBAy7tVserDNoVNLBhQXlBWANcnZEK14jlTUp6SCXClc6UkPycXKa0AgFIFE6Jmfd96tIMPXRaaDG1cjt3aDi5626bMd1l0dfjKmjZss6UddgOXLslZM47d1aFOyfvjw9v8OV-8Pr3MZ4schWZDLpmyWAuOpcKaMq4qAQpFpVlZ1aClZI1VNSK6StS8FMC0YDgWaCphpeVTcru_28fwsXFpMGuf0LWt7VzYJENLpYEyzfR_UFqCFqo8jkpJYWerGtFyj2IMKUXXmD76tY3fhoLZ-Tcr8-vf7Pwbyszof1y8OfywCW3bRNuhT3_bY2QJ-9j3e86NGj-9iyahdx262keHg6mDP_bqB1nonRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551077539</pqid></control><display><type>article</type><title>Application of carbon materials in redox flow batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Chakrabarti, M.H. ; Brandon, N.P. ; Hajimolana, S.A. ; Tariq, F. ; Yufit, V. ; Hashim, M.A. ; Hussain, M.A. ; Low, C.T.J. ; Aravind, P.V.</creator><creatorcontrib>Chakrabarti, M.H. ; Brandon, N.P. ; Hajimolana, S.A. ; Tariq, F. ; Yufit, V. ; Hashim, M.A. ; Hussain, M.A. ; Low, C.T.J. ; Aravind, P.V.</creatorcontrib><description>The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology. •A comprehensive coverage on carbon materials used in redox flow batteries is given.•The influence of nanotechnology and graphene is discussed in detail.•The importance of studying RFB degradation mechanisms is emphasised.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.12.038</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Carbon ; Carbon-based electrodes ; Cloth ; Corrosion ; Direct energy conversion and energy accumulation ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrical resistivity ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Exact sciences and technology ; Failure ; Graphene ; Nanostructure ; Nanotechnology ; Redox flow battery ; X-ray tomography</subject><ispartof>Journal of power sources, 2014-05, Vol.253, p.150-166</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-527acd43c67cd12379407c498269d08552fa7dccce94d36402842c4020f94a5a3</citedby><cites>FETCH-LOGICAL-c482t-527acd43c67cd12379407c498269d08552fa7dccce94d36402842c4020f94a5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775313020065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28250828$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakrabarti, M.H.</creatorcontrib><creatorcontrib>Brandon, N.P.</creatorcontrib><creatorcontrib>Hajimolana, S.A.</creatorcontrib><creatorcontrib>Tariq, F.</creatorcontrib><creatorcontrib>Yufit, V.</creatorcontrib><creatorcontrib>Hashim, M.A.</creatorcontrib><creatorcontrib>Hussain, M.A.</creatorcontrib><creatorcontrib>Low, C.T.J.</creatorcontrib><creatorcontrib>Aravind, P.V.</creatorcontrib><title>Application of carbon materials in redox flow batteries</title><title>Journal of power sources</title><description>The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology. •A comprehensive coverage on carbon materials used in redox flow batteries is given.•The influence of nanotechnology and graphene is discussed in detail.•The importance of studying RFB degradation mechanisms is emphasised.</description><subject>Applied sciences</subject><subject>Carbon</subject><subject>Carbon-based electrodes</subject><subject>Cloth</subject><subject>Corrosion</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrical resistivity</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Graphene</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Redox flow battery</subject><subject>X-ray tomography</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFb_guQieEmc_cpubpbiFxS86HnZTjawJc3G3dTqvzel1Ws9zcA8M_PyEHJNoaBAy7tVserDNoVNLBhQXlBWANcnZEK14jlTUp6SCXClc6UkPycXKa0AgFIFE6Jmfd96tIMPXRaaDG1cjt3aDi5626bMd1l0dfjKmjZss6UddgOXLslZM47d1aFOyfvjw9v8OV-8Pr3MZ4schWZDLpmyWAuOpcKaMq4qAQpFpVlZ1aClZI1VNSK6StS8FMC0YDgWaCphpeVTcru_28fwsXFpMGuf0LWt7VzYJENLpYEyzfR_UFqCFqo8jkpJYWerGtFyj2IMKUXXmD76tY3fhoLZ-Tcr8-vf7Pwbyszof1y8OfywCW3bRNuhT3_bY2QJ-9j3e86NGj-9iyahdx262keHg6mDP_bqB1nonRQ</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Chakrabarti, M.H.</creator><creator>Brandon, N.P.</creator><creator>Hajimolana, S.A.</creator><creator>Tariq, F.</creator><creator>Yufit, V.</creator><creator>Hashim, M.A.</creator><creator>Hussain, M.A.</creator><creator>Low, C.T.J.</creator><creator>Aravind, P.V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Application of carbon materials in redox flow batteries</title><author>Chakrabarti, M.H. ; Brandon, N.P. ; Hajimolana, S.A. ; Tariq, F. ; Yufit, V. ; Hashim, M.A. ; Hussain, M.A. ; Low, C.T.J. ; Aravind, P.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-527acd43c67cd12379407c498269d08552fa7dccce94d36402842c4020f94a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Carbon</topic><topic>Carbon-based electrodes</topic><topic>Cloth</topic><topic>Corrosion</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrical resistivity</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Graphene</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Redox flow battery</topic><topic>X-ray tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, M.H.</creatorcontrib><creatorcontrib>Brandon, N.P.</creatorcontrib><creatorcontrib>Hajimolana, S.A.</creatorcontrib><creatorcontrib>Tariq, F.</creatorcontrib><creatorcontrib>Yufit, V.</creatorcontrib><creatorcontrib>Hashim, M.A.</creatorcontrib><creatorcontrib>Hussain, M.A.</creatorcontrib><creatorcontrib>Low, C.T.J.</creatorcontrib><creatorcontrib>Aravind, P.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, M.H.</au><au>Brandon, N.P.</au><au>Hajimolana, S.A.</au><au>Tariq, F.</au><au>Yufit, V.</au><au>Hashim, M.A.</au><au>Hussain, M.A.</au><au>Low, C.T.J.</au><au>Aravind, P.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of carbon materials in redox flow batteries</atitle><jtitle>Journal of power sources</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>253</volume><spage>150</spage><epage>166</epage><pages>150-166</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology. •A comprehensive coverage on carbon materials used in redox flow batteries is given.•The influence of nanotechnology and graphene is discussed in detail.•The importance of studying RFB degradation mechanisms is emphasised.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.12.038</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-05, Vol.253, p.150-166
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1678012828
source Elsevier ScienceDirect Journals
subjects Applied sciences
Carbon
Carbon-based electrodes
Cloth
Corrosion
Direct energy conversion and energy accumulation
Electric batteries
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrical resistivity
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Exact sciences and technology
Failure
Graphene
Nanostructure
Nanotechnology
Redox flow battery
X-ray tomography
title Application of carbon materials in redox flow batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20carbon%20materials%20in%20redox%20flow%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Chakrabarti,%20M.H.&rft.date=2014-05-01&rft.volume=253&rft.spage=150&rft.epage=166&rft.pages=150-166&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.12.038&rft_dat=%3Cproquest_cross%3E1551077539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551077539&rft_id=info:pmid/&rft_els_id=S0378775313020065&rfr_iscdi=true