MHD flow and heat transfer in a lid-driven porous enclosure

•DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium. The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2014-01, Vol.89, p.191-199
Hauptverfasser: Pekmen, B., Tezer-Sezgin, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue
container_start_page 191
container_title Computers & fluids
container_volume 89
creator Pekmen, B.
Tezer-Sezgin, M.
description •DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium. The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity.
doi_str_mv 10.1016/j.compfluid.2013.10.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678011920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793013004337</els_id><sourcerecordid>1530977979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-15a34e1370a8fa29f66dbfff5f1f6ad8f8e915ba39df31dacfe81b1120f6bf253</originalsourceid><addsrcrecordid>eNqNUU1PwzAMjRBIjMFvIEcuHXHTNo04TeNjSENc4BxljS0yde1IuiH-PZmGuI6TZfu9J_s9xq5BTEBAdbuaNP16Q-3Wu0kuQKbpRBTlCRtBrXQmVKFO2UikUaa0FOfsIsaVSL3MixG7e5nfc2r7L247xz_QDnwItouEgfuOW956l7ngd9jxTR_6beTYNW0ftwEv2RnZNuLVbx2z98eHt9k8W7w-Pc-mi6wpoBgyKK0sEKQStiaba6oqtySikoAq62qqUUO5tFI7kuBsQ1jDEiAXVC0pL-WY3Rx0N6H_3GIczNrHBtvWdpgOMlCpWgDoXByHliWkzwut_wGVQiul1R6qDtAm9DEGJLMJfm3DtwFh9iGYlfkLwexD2C-S44k5PTAx-bPzGExsfDIQnQ_YDMb1_qjGD95Lk48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530977979</pqid></control><display><type>article</type><title>MHD flow and heat transfer in a lid-driven porous enclosure</title><source>Elsevier ScienceDirect Journals</source><creator>Pekmen, B. ; Tezer-Sezgin, M.</creator><creatorcontrib>Pekmen, B. ; Tezer-Sezgin, M.</creatorcontrib><description>•DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium. The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2013.10.045</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fluid flow ; Fluids ; Heat transfer ; Holes ; Magnetic fields ; Magnetic potential ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical models ; MHD ; Mixed convection ; Porous medium</subject><ispartof>Computers &amp; fluids, 2014-01, Vol.89, p.191-199</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-15a34e1370a8fa29f66dbfff5f1f6ad8f8e915ba39df31dacfe81b1120f6bf253</citedby><cites>FETCH-LOGICAL-c414t-15a34e1370a8fa29f66dbfff5f1f6ad8f8e915ba39df31dacfe81b1120f6bf253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793013004337$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pekmen, B.</creatorcontrib><creatorcontrib>Tezer-Sezgin, M.</creatorcontrib><title>MHD flow and heat transfer in a lid-driven porous enclosure</title><title>Computers &amp; fluids</title><description>•DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium. The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity.</description><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Magnetic fields</subject><subject>Magnetic potential</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MHD</subject><subject>Mixed convection</subject><subject>Porous medium</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUU1PwzAMjRBIjMFvIEcuHXHTNo04TeNjSENc4BxljS0yde1IuiH-PZmGuI6TZfu9J_s9xq5BTEBAdbuaNP16Q-3Wu0kuQKbpRBTlCRtBrXQmVKFO2UikUaa0FOfsIsaVSL3MixG7e5nfc2r7L247xz_QDnwItouEgfuOW956l7ngd9jxTR_6beTYNW0ftwEv2RnZNuLVbx2z98eHt9k8W7w-Pc-mi6wpoBgyKK0sEKQStiaba6oqtySikoAq62qqUUO5tFI7kuBsQ1jDEiAXVC0pL-WY3Rx0N6H_3GIczNrHBtvWdpgOMlCpWgDoXByHliWkzwut_wGVQiul1R6qDtAm9DEGJLMJfm3DtwFh9iGYlfkLwexD2C-S44k5PTAx-bPzGExsfDIQnQ_YDMb1_qjGD95Lk48</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Pekmen, B.</creator><creator>Tezer-Sezgin, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20140101</creationdate><title>MHD flow and heat transfer in a lid-driven porous enclosure</title><author>Pekmen, B. ; Tezer-Sezgin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-15a34e1370a8fa29f66dbfff5f1f6ad8f8e915ba39df31dacfe81b1120f6bf253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Magnetic fields</topic><topic>Magnetic potential</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MHD</topic><topic>Mixed convection</topic><topic>Porous medium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pekmen, B.</creatorcontrib><creatorcontrib>Tezer-Sezgin, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pekmen, B.</au><au>Tezer-Sezgin, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MHD flow and heat transfer in a lid-driven porous enclosure</atitle><jtitle>Computers &amp; fluids</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>89</volume><spage>191</spage><epage>199</epage><pages>191-199</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium. The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2013.10.045</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2014-01, Vol.89, p.191-199
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_miscellaneous_1678011920
source Elsevier ScienceDirect Journals
subjects Fluid flow
Fluids
Heat transfer
Holes
Magnetic fields
Magnetic potential
Magnetohydrodynamics
Mathematical analysis
Mathematical models
MHD
Mixed convection
Porous medium
title MHD flow and heat transfer in a lid-driven porous enclosure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MHD%20flow%20and%20heat%20transfer%20in%20a%20lid-driven%20porous%20enclosure&rft.jtitle=Computers%20&%20fluids&rft.au=Pekmen,%20B.&rft.date=2014-01-01&rft.volume=89&rft.spage=191&rft.epage=199&rft.pages=191-199&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2013.10.045&rft_dat=%3Cproquest_cross%3E1530977979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530977979&rft_id=info:pmid/&rft_els_id=S0045793013004337&rfr_iscdi=true