MHD flow and heat transfer in a lid-driven porous enclosure
•DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium. The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is st...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2014-01, Vol.89, p.191-199 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | |
container_start_page | 191 |
container_title | Computers & fluids |
container_volume | 89 |
creator | Pekmen, B. Tezer-Sezgin, M. |
description | •DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium.
The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity. |
doi_str_mv | 10.1016/j.compfluid.2013.10.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678011920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793013004337</els_id><sourcerecordid>1530977979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-15a34e1370a8fa29f66dbfff5f1f6ad8f8e915ba39df31dacfe81b1120f6bf253</originalsourceid><addsrcrecordid>eNqNUU1PwzAMjRBIjMFvIEcuHXHTNo04TeNjSENc4BxljS0yde1IuiH-PZmGuI6TZfu9J_s9xq5BTEBAdbuaNP16Q-3Wu0kuQKbpRBTlCRtBrXQmVKFO2UikUaa0FOfsIsaVSL3MixG7e5nfc2r7L247xz_QDnwItouEgfuOW956l7ngd9jxTR_6beTYNW0ftwEv2RnZNuLVbx2z98eHt9k8W7w-Pc-mi6wpoBgyKK0sEKQStiaba6oqtySikoAq62qqUUO5tFI7kuBsQ1jDEiAXVC0pL-WY3Rx0N6H_3GIczNrHBtvWdpgOMlCpWgDoXByHliWkzwut_wGVQiul1R6qDtAm9DEGJLMJfm3DtwFh9iGYlfkLwexD2C-S44k5PTAx-bPzGExsfDIQnQ_YDMb1_qjGD95Lk48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530977979</pqid></control><display><type>article</type><title>MHD flow and heat transfer in a lid-driven porous enclosure</title><source>Elsevier ScienceDirect Journals</source><creator>Pekmen, B. ; Tezer-Sezgin, M.</creator><creatorcontrib>Pekmen, B. ; Tezer-Sezgin, M.</creatorcontrib><description>•DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium.
The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2013.10.045</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fluid flow ; Fluids ; Heat transfer ; Holes ; Magnetic fields ; Magnetic potential ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical models ; MHD ; Mixed convection ; Porous medium</subject><ispartof>Computers & fluids, 2014-01, Vol.89, p.191-199</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-15a34e1370a8fa29f66dbfff5f1f6ad8f8e915ba39df31dacfe81b1120f6bf253</citedby><cites>FETCH-LOGICAL-c414t-15a34e1370a8fa29f66dbfff5f1f6ad8f8e915ba39df31dacfe81b1120f6bf253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793013004337$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pekmen, B.</creatorcontrib><creatorcontrib>Tezer-Sezgin, M.</creatorcontrib><title>MHD flow and heat transfer in a lid-driven porous enclosure</title><title>Computers & fluids</title><description>•DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium.
The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity.</description><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Magnetic fields</subject><subject>Magnetic potential</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MHD</subject><subject>Mixed convection</subject><subject>Porous medium</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUU1PwzAMjRBIjMFvIEcuHXHTNo04TeNjSENc4BxljS0yde1IuiH-PZmGuI6TZfu9J_s9xq5BTEBAdbuaNP16Q-3Wu0kuQKbpRBTlCRtBrXQmVKFO2UikUaa0FOfsIsaVSL3MixG7e5nfc2r7L247xz_QDnwItouEgfuOW956l7ngd9jxTR_6beTYNW0ftwEv2RnZNuLVbx2z98eHt9k8W7w-Pc-mi6wpoBgyKK0sEKQStiaba6oqtySikoAq62qqUUO5tFI7kuBsQ1jDEiAXVC0pL-WY3Rx0N6H_3GIczNrHBtvWdpgOMlCpWgDoXByHliWkzwut_wGVQiul1R6qDtAm9DEGJLMJfm3DtwFh9iGYlfkLwexD2C-S44k5PTAx-bPzGExsfDIQnQ_YDMb1_qjGD95Lk48</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Pekmen, B.</creator><creator>Tezer-Sezgin, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20140101</creationdate><title>MHD flow and heat transfer in a lid-driven porous enclosure</title><author>Pekmen, B. ; Tezer-Sezgin, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-15a34e1370a8fa29f66dbfff5f1f6ad8f8e915ba39df31dacfe81b1120f6bf253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Magnetic fields</topic><topic>Magnetic potential</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MHD</topic><topic>Mixed convection</topic><topic>Porous medium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pekmen, B.</creatorcontrib><creatorcontrib>Tezer-Sezgin, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pekmen, B.</au><au>Tezer-Sezgin, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MHD flow and heat transfer in a lid-driven porous enclosure</atitle><jtitle>Computers & fluids</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>89</volume><spage>191</spage><epage>199</epage><pages>191-199</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•DRBEM solution for this problem is a new application.•Induced magnetic field is also taken into consideration.•MHD flow and heat transfer are considered in a porous medium.
The mixed convection flow in a lid-driven square cavity filled with a porous medium under the effect of a magnetic field is studied numerically using the dual reciprocity boundary element method (DRBEM) with Houbolt time integration scheme. Induced magnetic field is also taken into consideration in terms of magnetic potential in solving magnetohydrodynamic (MHD) flow and temperature equations. Effects of the characteristic dimensionless parameters as Darcy (Da), Magnetic Reynolds (Rem), Grashof (Gr) and Hartmann (Ha) numbers, on the flow and heat transfer in the cavity are investigated at the final steady-state. It is found that the decrease in the permeability of porous medium and the increase in the intensity of the applied magnetic field cause the fluid to flow slowly. The convective heat transfer is reduced with an increase in Hartmann number. Magnetic potential circulates throughout the cavity with high magnetic permeability of the fluid. The combination of DRBEM with the Houbolt scheme has the advantage of using considerably small number of boundary elements and large time increments which results in small computational cost for solving the mixed convection MHD flow in a porous cavity.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2013.10.045</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2014-01, Vol.89, p.191-199 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_miscellaneous_1678011920 |
source | Elsevier ScienceDirect Journals |
subjects | Fluid flow Fluids Heat transfer Holes Magnetic fields Magnetic potential Magnetohydrodynamics Mathematical analysis Mathematical models MHD Mixed convection Porous medium |
title | MHD flow and heat transfer in a lid-driven porous enclosure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MHD%20flow%20and%20heat%20transfer%20in%20a%20lid-driven%20porous%20enclosure&rft.jtitle=Computers%20&%20fluids&rft.au=Pekmen,%20B.&rft.date=2014-01-01&rft.volume=89&rft.spage=191&rft.epage=199&rft.pages=191-199&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2013.10.045&rft_dat=%3Cproquest_cross%3E1530977979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530977979&rft_id=info:pmid/&rft_els_id=S0045793013004337&rfr_iscdi=true |