Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures

Optical absorption of electronic defects induced by chemical reduction, and chemical diffusion in a vapor transport equilibrated lithium niobate single crystal with 49.5mol% Li2O were studied using UV–vis-NIR optical spectroscopy under in situ conditions. In reducing atmospheres at 1000°C, optical a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2014-09, Vol.262, p.904-907
Hauptverfasser: Shi, Jianmin, Fritze, Holger, Weidenfelder, Anke, Swanson, Claudia, Fielitz, Peter, Borchardt, Günter, Becker, Klaus-Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue
container_start_page 904
container_title Solid state ionics
container_volume 262
creator Shi, Jianmin
Fritze, Holger
Weidenfelder, Anke
Swanson, Claudia
Fielitz, Peter
Borchardt, Günter
Becker, Klaus-Dieter
description Optical absorption of electronic defects induced by chemical reduction, and chemical diffusion in a vapor transport equilibrated lithium niobate single crystal with 49.5mol% Li2O were studied using UV–vis-NIR optical spectroscopy under in situ conditions. In reducing atmospheres at 1000°C, optical absorption spectra are dominated by a band at about 0.93eV which is attributed to absorption of free electron-polarons, i.e., to electrons localized on niobium ions on regular lattice sites. The electron-polaron band intensity was found to follow a power law of the form (pO2)m with m ≈ −0.21. Chemical reduction reactions forming free electron-polarons were found to explain the observed defect absorption and its dependence on oxygen partial pressure at high temperatures. The chemical diffusion coefficient in the vapor transport equilibrated lithium niobate has been determined to be 2.75×10−11m2/s at 1000°C from the kinetics of reduction and oxidation processes in the range of −10
doi_str_mv 10.1016/j.ssi.2013.11.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678010762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273813006048</els_id><sourcerecordid>1620066710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-dbb9067881b4930aedbd7e35b20f252a9dd725381e5cc59d81629cffc8f3fd233</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVJoZu0H6A3HXuxqz-xJdNTCE1aCOSSnoUsjbqz2JYjyYHe88GjzeZccprH8HsD8x4hXzlrOeP990ObM7aCcdly3jLRfSA7rpVoVK-HM7KrjGqEkvoTOc_5wBjrpe535Pl-LejsRO2YY6o6LjQGChO4kuKCjnoIVWdqF0_dHuZX2mMIWz7CuNAnu8ZES7JLrqJQeNxwwjHZAp5OWPa4zXTBONYFtYXu8e-eFphXqMiWIH8mH4OdMnx5mxfkz83Ph-tfzd397e_rq7vGXUpZGj-OA-uV1ny8HCSz4EevQHajYEF0wg7eK9FJzaFzrhu85r0YXAhOBxm8kPKCfDvdXVN83CAXM2N2ME12gbhlUzPSjDPVi3egokbYK84qyk-oSzHnBMGsCWeb_hnOzLEcczC1HHMsx3BuajnV8-PkgfruE0Iy2SEsDjymmrbxEf_jfgFC85rh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620066710</pqid></control><display><type>article</type><title>Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shi, Jianmin ; Fritze, Holger ; Weidenfelder, Anke ; Swanson, Claudia ; Fielitz, Peter ; Borchardt, Günter ; Becker, Klaus-Dieter</creator><creatorcontrib>Shi, Jianmin ; Fritze, Holger ; Weidenfelder, Anke ; Swanson, Claudia ; Fielitz, Peter ; Borchardt, Günter ; Becker, Klaus-Dieter</creatorcontrib><description>Optical absorption of electronic defects induced by chemical reduction, and chemical diffusion in a vapor transport equilibrated lithium niobate single crystal with 49.5mol% Li2O were studied using UV–vis-NIR optical spectroscopy under in situ conditions. In reducing atmospheres at 1000°C, optical absorption spectra are dominated by a band at about 0.93eV which is attributed to absorption of free electron-polarons, i.e., to electrons localized on niobium ions on regular lattice sites. The electron-polaron band intensity was found to follow a power law of the form (pO2)m with m ≈ −0.21. Chemical reduction reactions forming free electron-polarons were found to explain the observed defect absorption and its dependence on oxygen partial pressure at high temperatures. The chemical diffusion coefficient in the vapor transport equilibrated lithium niobate has been determined to be 2.75×10−11m2/s at 1000°C from the kinetics of reduction and oxidation processes in the range of −10 &lt;logpO2/atm &lt; −14. •Optical absorption of vapor transport treated lithium niobate was measured at 1000°C in the range of logpO2/atm from −0.77 to −16.7•The absorption spectra under reducing conditions are dominated by a band at about 0.93eV due to free small electron-polarons and the absorption intensity of electronic defects shows a power law dependence on oxygen partial pressure with an exponent of −0.21•Chemical reduction reactions with and without the loss of Li2O to form free electron-polarons can explain the observed pO2-depencence•Chemical diffusion coefficient was determined using pO2-jump relaxation experiments as 2.75×10−11m2/s at 1000°C.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2013.11.025</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Balancing ; Chemical diffusion ; Crystal defects ; Electron-polarons ; Electronic defects ; Electronics ; Lithium niobate ; Lithium niobates ; Optical absorption ; Reduction (chemical) ; Transport</subject><ispartof>Solid state ionics, 2014-09, Vol.262, p.904-907</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-dbb9067881b4930aedbd7e35b20f252a9dd725381e5cc59d81629cffc8f3fd233</citedby><cites>FETCH-LOGICAL-c433t-dbb9067881b4930aedbd7e35b20f252a9dd725381e5cc59d81629cffc8f3fd233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167273813006048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Shi, Jianmin</creatorcontrib><creatorcontrib>Fritze, Holger</creatorcontrib><creatorcontrib>Weidenfelder, Anke</creatorcontrib><creatorcontrib>Swanson, Claudia</creatorcontrib><creatorcontrib>Fielitz, Peter</creatorcontrib><creatorcontrib>Borchardt, Günter</creatorcontrib><creatorcontrib>Becker, Klaus-Dieter</creatorcontrib><title>Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures</title><title>Solid state ionics</title><description>Optical absorption of electronic defects induced by chemical reduction, and chemical diffusion in a vapor transport equilibrated lithium niobate single crystal with 49.5mol% Li2O were studied using UV–vis-NIR optical spectroscopy under in situ conditions. In reducing atmospheres at 1000°C, optical absorption spectra are dominated by a band at about 0.93eV which is attributed to absorption of free electron-polarons, i.e., to electrons localized on niobium ions on regular lattice sites. The electron-polaron band intensity was found to follow a power law of the form (pO2)m with m ≈ −0.21. Chemical reduction reactions forming free electron-polarons were found to explain the observed defect absorption and its dependence on oxygen partial pressure at high temperatures. The chemical diffusion coefficient in the vapor transport equilibrated lithium niobate has been determined to be 2.75×10−11m2/s at 1000°C from the kinetics of reduction and oxidation processes in the range of −10 &lt;logpO2/atm &lt; −14. •Optical absorption of vapor transport treated lithium niobate was measured at 1000°C in the range of logpO2/atm from −0.77 to −16.7•The absorption spectra under reducing conditions are dominated by a band at about 0.93eV due to free small electron-polarons and the absorption intensity of electronic defects shows a power law dependence on oxygen partial pressure with an exponent of −0.21•Chemical reduction reactions with and without the loss of Li2O to form free electron-polarons can explain the observed pO2-depencence•Chemical diffusion coefficient was determined using pO2-jump relaxation experiments as 2.75×10−11m2/s at 1000°C.</description><subject>Asymptotic properties</subject><subject>Balancing</subject><subject>Chemical diffusion</subject><subject>Crystal defects</subject><subject>Electron-polarons</subject><subject>Electronic defects</subject><subject>Electronics</subject><subject>Lithium niobate</subject><subject>Lithium niobates</subject><subject>Optical absorption</subject><subject>Reduction (chemical)</subject><subject>Transport</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAQxUVJoZu0H6A3HXuxqz-xJdNTCE1aCOSSnoUsjbqz2JYjyYHe88GjzeZccprH8HsD8x4hXzlrOeP990ObM7aCcdly3jLRfSA7rpVoVK-HM7KrjGqEkvoTOc_5wBjrpe535Pl-LejsRO2YY6o6LjQGChO4kuKCjnoIVWdqF0_dHuZX2mMIWz7CuNAnu8ZES7JLrqJQeNxwwjHZAp5OWPa4zXTBONYFtYXu8e-eFphXqMiWIH8mH4OdMnx5mxfkz83Ph-tfzd397e_rq7vGXUpZGj-OA-uV1ny8HCSz4EevQHajYEF0wg7eK9FJzaFzrhu85r0YXAhOBxm8kPKCfDvdXVN83CAXM2N2ME12gbhlUzPSjDPVi3egokbYK84qyk-oSzHnBMGsCWeb_hnOzLEcczC1HHMsx3BuajnV8-PkgfruE0Iy2SEsDjymmrbxEf_jfgFC85rh</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Shi, Jianmin</creator><creator>Fritze, Holger</creator><creator>Weidenfelder, Anke</creator><creator>Swanson, Claudia</creator><creator>Fielitz, Peter</creator><creator>Borchardt, Günter</creator><creator>Becker, Klaus-Dieter</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures</title><author>Shi, Jianmin ; Fritze, Holger ; Weidenfelder, Anke ; Swanson, Claudia ; Fielitz, Peter ; Borchardt, Günter ; Becker, Klaus-Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-dbb9067881b4930aedbd7e35b20f252a9dd725381e5cc59d81629cffc8f3fd233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Balancing</topic><topic>Chemical diffusion</topic><topic>Crystal defects</topic><topic>Electron-polarons</topic><topic>Electronic defects</topic><topic>Electronics</topic><topic>Lithium niobate</topic><topic>Lithium niobates</topic><topic>Optical absorption</topic><topic>Reduction (chemical)</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jianmin</creatorcontrib><creatorcontrib>Fritze, Holger</creatorcontrib><creatorcontrib>Weidenfelder, Anke</creatorcontrib><creatorcontrib>Swanson, Claudia</creatorcontrib><creatorcontrib>Fielitz, Peter</creatorcontrib><creatorcontrib>Borchardt, Günter</creatorcontrib><creatorcontrib>Becker, Klaus-Dieter</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jianmin</au><au>Fritze, Holger</au><au>Weidenfelder, Anke</au><au>Swanson, Claudia</au><au>Fielitz, Peter</au><au>Borchardt, Günter</au><au>Becker, Klaus-Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures</atitle><jtitle>Solid state ionics</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>262</volume><spage>904</spage><epage>907</epage><pages>904-907</pages><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Optical absorption of electronic defects induced by chemical reduction, and chemical diffusion in a vapor transport equilibrated lithium niobate single crystal with 49.5mol% Li2O were studied using UV–vis-NIR optical spectroscopy under in situ conditions. In reducing atmospheres at 1000°C, optical absorption spectra are dominated by a band at about 0.93eV which is attributed to absorption of free electron-polarons, i.e., to electrons localized on niobium ions on regular lattice sites. The electron-polaron band intensity was found to follow a power law of the form (pO2)m with m ≈ −0.21. Chemical reduction reactions forming free electron-polarons were found to explain the observed defect absorption and its dependence on oxygen partial pressure at high temperatures. The chemical diffusion coefficient in the vapor transport equilibrated lithium niobate has been determined to be 2.75×10−11m2/s at 1000°C from the kinetics of reduction and oxidation processes in the range of −10 &lt;logpO2/atm &lt; −14. •Optical absorption of vapor transport treated lithium niobate was measured at 1000°C in the range of logpO2/atm from −0.77 to −16.7•The absorption spectra under reducing conditions are dominated by a band at about 0.93eV due to free small electron-polarons and the absorption intensity of electronic defects shows a power law dependence on oxygen partial pressure with an exponent of −0.21•Chemical reduction reactions with and without the loss of Li2O to form free electron-polarons can explain the observed pO2-depencence•Chemical diffusion coefficient was determined using pO2-jump relaxation experiments as 2.75×10−11m2/s at 1000°C.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2013.11.025</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2014-09, Vol.262, p.904-907
issn 0167-2738
1872-7689
language eng
recordid cdi_proquest_miscellaneous_1678010762
source Elsevier ScienceDirect Journals Complete
subjects Asymptotic properties
Balancing
Chemical diffusion
Crystal defects
Electron-polarons
Electronic defects
Electronics
Lithium niobate
Lithium niobates
Optical absorption
Reduction (chemical)
Transport
title Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20absorption%20of%20electronic%20defects%20and%20chemical%20diffusion%20in%20vapor%20transport%20equilibrated%20lithium%20niobate%20at%20high%20temperatures&rft.jtitle=Solid%20state%20ionics&rft.au=Shi,%20Jianmin&rft.date=2014-09-01&rft.volume=262&rft.spage=904&rft.epage=907&rft.pages=904-907&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2013.11.025&rft_dat=%3Cproquest_cross%3E1620066710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620066710&rft_id=info:pmid/&rft_els_id=S0167273813006048&rfr_iscdi=true