Ionothermal synthesis and electrochemical analysis of Fe doped LiMnPO sub(4)/C composites as cathode materials for lithium-ion batteries
Shuttle shaped and Fe doped LiMnPO sub(4) particles are successfully synthesized via an ionothermal routine in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM]OTf and 1-buty-3-methylimidazolium trifluoromethanesulfonate [BMIM]OTf at 260 [degrees]C, respectively. And then, the carbon coat...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2014-11, Vol.614, p.7-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Shuttle shaped and Fe doped LiMnPO sub(4) particles are successfully synthesized via an ionothermal routine in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM]OTf and 1-buty-3-methylimidazolium trifluoromethanesulfonate [BMIM]OTf at 260 [degrees]C, respectively. And then, the carbon coated product of cathode materials can be efficiently prepared by a subsequent short calcination process. Scanning electron microscopy and field emission transmission electron microscopy shows that these as-prepared particles with the mean width of about 200 nm and length of 800 nm were coated by uniform carbon layers, which could improve the electronic conductivity of the final product effectively. The D sub(Li) values of samples that prepared in two ionic liquids above were calculated to be 1.36 x 10 super(-13) and 4.61 x 10 super(-14) cm super(2) s super(-1), respectively. It can be attributed to the LiMn sub(0.95)Fe sub(0.05)PO sub(4)/C particles prepared in [BMIM]OTf present more uniform distribution and smaller size. Thus, it deliver high discharge capacities of 159.2, 146.0, 135.1, 125.3, 115.5 and 84.4 mA h g super(-1) in the voltage range of 2.5-4.5 V at charge-discharge rate of 0.1, 0.2, 0.5, 1, 2 and 5 C, respectively. |
---|---|
ISSN: | 0925-8388 |
DOI: | 10.1016/j.jallcom.2014.06.085 |