Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity

•We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was trigg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biochemistry & cell biology 2013-11, Vol.45 (11), p.2553-2562
Hauptverfasser: Marino, Julieta, García Vior, María C., Furmento, Verónica A., Blank, Viviana C., Awruch, Josefina, Roguin, Leonor P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2562
container_issue 11
container_start_page 2553
container_title The international journal of biochemistry & cell biology
container_volume 45
creator Marino, Julieta
García Vior, María C.
Furmento, Verónica A.
Blank, Viviana C.
Awruch, Josefina
Roguin, Leonor P.
description •We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was triggered downstream mitochondria damage.•A model of Pc13-induced apoptotic pathway in KB cells is proposed. In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a
doi_str_mv 10.1016/j.biocel.2013.08.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678008272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135727251300280X</els_id><sourcerecordid>1530987847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-7af9893928fca0ab477c77cdd11758d7a0e54decbf0f69f3d3be84d93f0f59c33</originalsourceid><addsrcrecordid>eNqFkU1v3CAQhlHVqEnT_oOq9TE92B0MLHCpVEX9WGmlHtqcEQbcnZVttuCtuvn1Yes0x0QgwcAzM_C-hLyh0FCgqw-7psPowtC0QFkDqgHaPiMXVElVCyXF87JnQtatbMU5eZnzDgCoaNkLct4yrTlX6oL4zTHHHEc7VHby1YhzdNs4-YTlZB_SGGyHA97aGeNUjcGjnUOubnFyV-v1-8r9u0BX7bfz1g7RHe2EUyhhnMv4iw7n4yty1tshh9f36yW5-fL55_W3evP96_r606Z2XLRzLW2vlWa6Vb2zYDsupSvTe0qlUF5aCIL74Loe-pXumWddUNxrVmKhHWOX5Gqpu0_x9yHk2YyYi0SDnUI8ZENXUgGoosjTqGCgi5RcPo1yznixROiC8gV1KeacQm_2CUebjoaCOblmdmZxzZxcM6BMca2kvb3vcOiKxA9J_20qwLsF6G009lfCbG5-lAorOH0H6Knzx4UIRd8_GJLJDsPkimEpuNn4iI-_4Q4IyrVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443410159</pqid></control><display><type>article</type><title>Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Marino, Julieta ; García Vior, María C. ; Furmento, Verónica A. ; Blank, Viviana C. ; Awruch, Josefina ; Roguin, Leonor P.</creator><creatorcontrib>Marino, Julieta ; García Vior, María C. ; Furmento, Verónica A. ; Blank, Viviana C. ; Awruch, Josefina ; Roguin, Leonor P.</creatorcontrib><description>•We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was triggered downstream mitochondria damage.•A model of Pc13-induced apoptotic pathway in KB cells is proposed. In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a post-mitochondrial event.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2013.08.012</identifier><identifier>PMID: 23994488</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>acridine orange ; Activation ; antioxidants ; Apoptosis ; Bcl-2 family proteins ; bcl-2-Associated X Protein - metabolism ; caspase-3 ; caspase-8 ; Caspases - metabolism ; cathepsin D ; Cathepsins - antagonists &amp; inhibitors ; Cathepsins - metabolism ; Cationic ; Cell Death - drug effects ; Cell Death - radiation effects ; Cell Line, Tumor ; cell proliferation ; Cleavage ; cytochrome c ; Cytochromes c - metabolism ; cytosol ; cytotoxicity ; Dermatitis, Phototoxic - metabolism ; Dermatitis, Phototoxic - pathology ; drug therapy ; Enzyme Activation - drug effects ; Enzyme Activation - radiation effects ; fluorescence ; Humans ; Indoles - chemistry ; Indoles - toxicity ; Intracellular Membranes - drug effects ; Intracellular Membranes - metabolism ; Intracellular Membranes - radiation effects ; Lysosomal proteases ; Lysosomes ; Lysosomes - drug effects ; Lysosomes - metabolism ; Lysosomes - radiation effects ; Membrane Potential, Mitochondrial - drug effects ; Membrane Potential, Mitochondrial - radiation effects ; Membranes ; mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - radiation effects ; Models, Biological ; nasopharynx ; neoplasm cells ; Organometallic Compounds - chemistry ; Organometallic Compounds - toxicity ; Pathways ; Permeability - drug effects ; Permeability - radiation effects ; Photochemotherapy ; Photodynamic therapy ; phototoxicity ; Phthalocyanine ; pro-apoptotic proteins ; Protease ; Protein Transport - drug effects ; Protein Transport - radiation effects ; Proteins ; Radiation, Ionizing ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; Signal Transduction - drug effects ; Signal Transduction - radiation effects ; zinc</subject><ispartof>The international journal of biochemistry &amp; cell biology, 2013-11, Vol.45 (11), p.2553-2562</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-7af9893928fca0ab477c77cdd11758d7a0e54decbf0f69f3d3be84d93f0f59c33</citedby><cites>FETCH-LOGICAL-c452t-7af9893928fca0ab477c77cdd11758d7a0e54decbf0f69f3d3be84d93f0f59c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biocel.2013.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23994488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marino, Julieta</creatorcontrib><creatorcontrib>García Vior, María C.</creatorcontrib><creatorcontrib>Furmento, Verónica A.</creatorcontrib><creatorcontrib>Blank, Viviana C.</creatorcontrib><creatorcontrib>Awruch, Josefina</creatorcontrib><creatorcontrib>Roguin, Leonor P.</creatorcontrib><title>Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity</title><title>The international journal of biochemistry &amp; cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>•We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was triggered downstream mitochondria damage.•A model of Pc13-induced apoptotic pathway in KB cells is proposed. In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a post-mitochondrial event.</description><subject>acridine orange</subject><subject>Activation</subject><subject>antioxidants</subject><subject>Apoptosis</subject><subject>Bcl-2 family proteins</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>caspase-3</subject><subject>caspase-8</subject><subject>Caspases - metabolism</subject><subject>cathepsin D</subject><subject>Cathepsins - antagonists &amp; inhibitors</subject><subject>Cathepsins - metabolism</subject><subject>Cationic</subject><subject>Cell Death - drug effects</subject><subject>Cell Death - radiation effects</subject><subject>Cell Line, Tumor</subject><subject>cell proliferation</subject><subject>Cleavage</subject><subject>cytochrome c</subject><subject>Cytochromes c - metabolism</subject><subject>cytosol</subject><subject>cytotoxicity</subject><subject>Dermatitis, Phototoxic - metabolism</subject><subject>Dermatitis, Phototoxic - pathology</subject><subject>drug therapy</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - radiation effects</subject><subject>fluorescence</subject><subject>Humans</subject><subject>Indoles - chemistry</subject><subject>Indoles - toxicity</subject><subject>Intracellular Membranes - drug effects</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - radiation effects</subject><subject>Lysosomal proteases</subject><subject>Lysosomes</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - radiation effects</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Potential, Mitochondrial - radiation effects</subject><subject>Membranes</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - radiation effects</subject><subject>Models, Biological</subject><subject>nasopharynx</subject><subject>neoplasm cells</subject><subject>Organometallic Compounds - chemistry</subject><subject>Organometallic Compounds - toxicity</subject><subject>Pathways</subject><subject>Permeability - drug effects</subject><subject>Permeability - radiation effects</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>phototoxicity</subject><subject>Phthalocyanine</subject><subject>pro-apoptotic proteins</subject><subject>Protease</subject><subject>Protein Transport - drug effects</subject><subject>Protein Transport - radiation effects</subject><subject>Proteins</subject><subject>Radiation, Ionizing</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - radiation effects</subject><subject>zinc</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v3CAQhlHVqEnT_oOq9TE92B0MLHCpVEX9WGmlHtqcEQbcnZVttuCtuvn1Yes0x0QgwcAzM_C-hLyh0FCgqw-7psPowtC0QFkDqgHaPiMXVElVCyXF87JnQtatbMU5eZnzDgCoaNkLct4yrTlX6oL4zTHHHEc7VHby1YhzdNs4-YTlZB_SGGyHA97aGeNUjcGjnUOubnFyV-v1-8r9u0BX7bfz1g7RHe2EUyhhnMv4iw7n4yty1tshh9f36yW5-fL55_W3evP96_r606Z2XLRzLW2vlWa6Vb2zYDsupSvTe0qlUF5aCIL74Loe-pXumWddUNxrVmKhHWOX5Gqpu0_x9yHk2YyYi0SDnUI8ZENXUgGoosjTqGCgi5RcPo1yznixROiC8gV1KeacQm_2CUebjoaCOblmdmZxzZxcM6BMca2kvb3vcOiKxA9J_20qwLsF6G009lfCbG5-lAorOH0H6Knzx4UIRd8_GJLJDsPkimEpuNn4iI-_4Q4IyrVM</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Marino, Julieta</creator><creator>García Vior, María C.</creator><creator>Furmento, Verónica A.</creator><creator>Blank, Viviana C.</creator><creator>Awruch, Josefina</creator><creator>Roguin, Leonor P.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity</title><author>Marino, Julieta ; García Vior, María C. ; Furmento, Verónica A. ; Blank, Viviana C. ; Awruch, Josefina ; Roguin, Leonor P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-7af9893928fca0ab477c77cdd11758d7a0e54decbf0f69f3d3be84d93f0f59c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acridine orange</topic><topic>Activation</topic><topic>antioxidants</topic><topic>Apoptosis</topic><topic>Bcl-2 family proteins</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>caspase-3</topic><topic>caspase-8</topic><topic>Caspases - metabolism</topic><topic>cathepsin D</topic><topic>Cathepsins - antagonists &amp; inhibitors</topic><topic>Cathepsins - metabolism</topic><topic>Cationic</topic><topic>Cell Death - drug effects</topic><topic>Cell Death - radiation effects</topic><topic>Cell Line, Tumor</topic><topic>cell proliferation</topic><topic>Cleavage</topic><topic>cytochrome c</topic><topic>Cytochromes c - metabolism</topic><topic>cytosol</topic><topic>cytotoxicity</topic><topic>Dermatitis, Phototoxic - metabolism</topic><topic>Dermatitis, Phototoxic - pathology</topic><topic>drug therapy</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - radiation effects</topic><topic>fluorescence</topic><topic>Humans</topic><topic>Indoles - chemistry</topic><topic>Indoles - toxicity</topic><topic>Intracellular Membranes - drug effects</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - radiation effects</topic><topic>Lysosomal proteases</topic><topic>Lysosomes</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - radiation effects</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Potential, Mitochondrial - radiation effects</topic><topic>Membranes</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - radiation effects</topic><topic>Models, Biological</topic><topic>nasopharynx</topic><topic>neoplasm cells</topic><topic>Organometallic Compounds - chemistry</topic><topic>Organometallic Compounds - toxicity</topic><topic>Pathways</topic><topic>Permeability - drug effects</topic><topic>Permeability - radiation effects</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>phototoxicity</topic><topic>Phthalocyanine</topic><topic>pro-apoptotic proteins</topic><topic>Protease</topic><topic>Protein Transport - drug effects</topic><topic>Protein Transport - radiation effects</topic><topic>Proteins</topic><topic>Radiation, Ionizing</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - radiation effects</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marino, Julieta</creatorcontrib><creatorcontrib>García Vior, María C.</creatorcontrib><creatorcontrib>Furmento, Verónica A.</creatorcontrib><creatorcontrib>Blank, Viviana C.</creatorcontrib><creatorcontrib>Awruch, Josefina</creatorcontrib><creatorcontrib>Roguin, Leonor P.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The international journal of biochemistry &amp; cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marino, Julieta</au><au>García Vior, María C.</au><au>Furmento, Verónica A.</au><au>Blank, Viviana C.</au><au>Awruch, Josefina</au><au>Roguin, Leonor P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity</atitle><jtitle>The international journal of biochemistry &amp; cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>45</volume><issue>11</issue><spage>2553</spage><epage>2562</epage><pages>2553-2562</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>•We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was triggered downstream mitochondria damage.•A model of Pc13-induced apoptotic pathway in KB cells is proposed. In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a post-mitochondrial event.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>23994488</pmid><doi>10.1016/j.biocel.2013.08.012</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1357-2725
ispartof The international journal of biochemistry & cell biology, 2013-11, Vol.45 (11), p.2553-2562
issn 1357-2725
1878-5875
language eng
recordid cdi_proquest_miscellaneous_1678008272
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects acridine orange
Activation
antioxidants
Apoptosis
Bcl-2 family proteins
bcl-2-Associated X Protein - metabolism
caspase-3
caspase-8
Caspases - metabolism
cathepsin D
Cathepsins - antagonists & inhibitors
Cathepsins - metabolism
Cationic
Cell Death - drug effects
Cell Death - radiation effects
Cell Line, Tumor
cell proliferation
Cleavage
cytochrome c
Cytochromes c - metabolism
cytosol
cytotoxicity
Dermatitis, Phototoxic - metabolism
Dermatitis, Phototoxic - pathology
drug therapy
Enzyme Activation - drug effects
Enzyme Activation - radiation effects
fluorescence
Humans
Indoles - chemistry
Indoles - toxicity
Intracellular Membranes - drug effects
Intracellular Membranes - metabolism
Intracellular Membranes - radiation effects
Lysosomal proteases
Lysosomes
Lysosomes - drug effects
Lysosomes - metabolism
Lysosomes - radiation effects
Membrane Potential, Mitochondrial - drug effects
Membrane Potential, Mitochondrial - radiation effects
Membranes
mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - radiation effects
Models, Biological
nasopharynx
neoplasm cells
Organometallic Compounds - chemistry
Organometallic Compounds - toxicity
Pathways
Permeability - drug effects
Permeability - radiation effects
Photochemotherapy
Photodynamic therapy
phototoxicity
Phthalocyanine
pro-apoptotic proteins
Protease
Protein Transport - drug effects
Protein Transport - radiation effects
Proteins
Radiation, Ionizing
reactive oxygen species
Reactive Oxygen Species - metabolism
Signal Transduction - drug effects
Signal Transduction - radiation effects
zinc
title Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lysosomal%20and%20mitochondrial%20permeabilization%20mediates%20zinc(II)%20cationic%20phthalocyanine%20phototoxicity&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Marino,%20Julieta&rft.date=2013-11-01&rft.volume=45&rft.issue=11&rft.spage=2553&rft.epage=2562&rft.pages=2553-2562&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2013.08.012&rft_dat=%3Cproquest_cross%3E1530987847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443410159&rft_id=info:pmid/23994488&rft_els_id=S135727251300280X&rfr_iscdi=true