Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity
•We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was trigg...
Gespeichert in:
Veröffentlicht in: | The international journal of biochemistry & cell biology 2013-11, Vol.45 (11), p.2553-2562 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2562 |
---|---|
container_issue | 11 |
container_start_page | 2553 |
container_title | The international journal of biochemistry & cell biology |
container_volume | 45 |
creator | Marino, Julieta García Vior, María C. Furmento, Verónica A. Blank, Viviana C. Awruch, Josefina Roguin, Leonor P. |
description | •We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was triggered downstream mitochondria damage.•A model of Pc13-induced apoptotic pathway in KB cells is proposed.
In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a |
doi_str_mv | 10.1016/j.biocel.2013.08.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678008272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135727251300280X</els_id><sourcerecordid>1530987847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-7af9893928fca0ab477c77cdd11758d7a0e54decbf0f69f3d3be84d93f0f59c33</originalsourceid><addsrcrecordid>eNqFkU1v3CAQhlHVqEnT_oOq9TE92B0MLHCpVEX9WGmlHtqcEQbcnZVttuCtuvn1Yes0x0QgwcAzM_C-hLyh0FCgqw-7psPowtC0QFkDqgHaPiMXVElVCyXF87JnQtatbMU5eZnzDgCoaNkLct4yrTlX6oL4zTHHHEc7VHby1YhzdNs4-YTlZB_SGGyHA97aGeNUjcGjnUOubnFyV-v1-8r9u0BX7bfz1g7RHe2EUyhhnMv4iw7n4yty1tshh9f36yW5-fL55_W3evP96_r606Z2XLRzLW2vlWa6Vb2zYDsupSvTe0qlUF5aCIL74Loe-pXumWddUNxrVmKhHWOX5Gqpu0_x9yHk2YyYi0SDnUI8ZENXUgGoosjTqGCgi5RcPo1yznixROiC8gV1KeacQm_2CUebjoaCOblmdmZxzZxcM6BMca2kvb3vcOiKxA9J_20qwLsF6G009lfCbG5-lAorOH0H6Knzx4UIRd8_GJLJDsPkimEpuNn4iI-_4Q4IyrVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443410159</pqid></control><display><type>article</type><title>Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Marino, Julieta ; García Vior, María C. ; Furmento, Verónica A. ; Blank, Viviana C. ; Awruch, Josefina ; Roguin, Leonor P.</creator><creatorcontrib>Marino, Julieta ; García Vior, María C. ; Furmento, Verónica A. ; Blank, Viviana C. ; Awruch, Josefina ; Roguin, Leonor P.</creatorcontrib><description>•We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was triggered downstream mitochondria damage.•A model of Pc13-induced apoptotic pathway in KB cells is proposed.
In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a post-mitochondrial event.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2013.08.012</identifier><identifier>PMID: 23994488</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>acridine orange ; Activation ; antioxidants ; Apoptosis ; Bcl-2 family proteins ; bcl-2-Associated X Protein - metabolism ; caspase-3 ; caspase-8 ; Caspases - metabolism ; cathepsin D ; Cathepsins - antagonists & inhibitors ; Cathepsins - metabolism ; Cationic ; Cell Death - drug effects ; Cell Death - radiation effects ; Cell Line, Tumor ; cell proliferation ; Cleavage ; cytochrome c ; Cytochromes c - metabolism ; cytosol ; cytotoxicity ; Dermatitis, Phototoxic - metabolism ; Dermatitis, Phototoxic - pathology ; drug therapy ; Enzyme Activation - drug effects ; Enzyme Activation - radiation effects ; fluorescence ; Humans ; Indoles - chemistry ; Indoles - toxicity ; Intracellular Membranes - drug effects ; Intracellular Membranes - metabolism ; Intracellular Membranes - radiation effects ; Lysosomal proteases ; Lysosomes ; Lysosomes - drug effects ; Lysosomes - metabolism ; Lysosomes - radiation effects ; Membrane Potential, Mitochondrial - drug effects ; Membrane Potential, Mitochondrial - radiation effects ; Membranes ; mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - radiation effects ; Models, Biological ; nasopharynx ; neoplasm cells ; Organometallic Compounds - chemistry ; Organometallic Compounds - toxicity ; Pathways ; Permeability - drug effects ; Permeability - radiation effects ; Photochemotherapy ; Photodynamic therapy ; phototoxicity ; Phthalocyanine ; pro-apoptotic proteins ; Protease ; Protein Transport - drug effects ; Protein Transport - radiation effects ; Proteins ; Radiation, Ionizing ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; Signal Transduction - drug effects ; Signal Transduction - radiation effects ; zinc</subject><ispartof>The international journal of biochemistry & cell biology, 2013-11, Vol.45 (11), p.2553-2562</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-7af9893928fca0ab477c77cdd11758d7a0e54decbf0f69f3d3be84d93f0f59c33</citedby><cites>FETCH-LOGICAL-c452t-7af9893928fca0ab477c77cdd11758d7a0e54decbf0f69f3d3be84d93f0f59c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biocel.2013.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23994488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marino, Julieta</creatorcontrib><creatorcontrib>García Vior, María C.</creatorcontrib><creatorcontrib>Furmento, Verónica A.</creatorcontrib><creatorcontrib>Blank, Viviana C.</creatorcontrib><creatorcontrib>Awruch, Josefina</creatorcontrib><creatorcontrib>Roguin, Leonor P.</creatorcontrib><title>Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity</title><title>The international journal of biochemistry & cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>•We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was triggered downstream mitochondria damage.•A model of Pc13-induced apoptotic pathway in KB cells is proposed.
In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a post-mitochondrial event.</description><subject>acridine orange</subject><subject>Activation</subject><subject>antioxidants</subject><subject>Apoptosis</subject><subject>Bcl-2 family proteins</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>caspase-3</subject><subject>caspase-8</subject><subject>Caspases - metabolism</subject><subject>cathepsin D</subject><subject>Cathepsins - antagonists & inhibitors</subject><subject>Cathepsins - metabolism</subject><subject>Cationic</subject><subject>Cell Death - drug effects</subject><subject>Cell Death - radiation effects</subject><subject>Cell Line, Tumor</subject><subject>cell proliferation</subject><subject>Cleavage</subject><subject>cytochrome c</subject><subject>Cytochromes c - metabolism</subject><subject>cytosol</subject><subject>cytotoxicity</subject><subject>Dermatitis, Phototoxic - metabolism</subject><subject>Dermatitis, Phototoxic - pathology</subject><subject>drug therapy</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - radiation effects</subject><subject>fluorescence</subject><subject>Humans</subject><subject>Indoles - chemistry</subject><subject>Indoles - toxicity</subject><subject>Intracellular Membranes - drug effects</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - radiation effects</subject><subject>Lysosomal proteases</subject><subject>Lysosomes</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - radiation effects</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Potential, Mitochondrial - radiation effects</subject><subject>Membranes</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - radiation effects</subject><subject>Models, Biological</subject><subject>nasopharynx</subject><subject>neoplasm cells</subject><subject>Organometallic Compounds - chemistry</subject><subject>Organometallic Compounds - toxicity</subject><subject>Pathways</subject><subject>Permeability - drug effects</subject><subject>Permeability - radiation effects</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>phototoxicity</subject><subject>Phthalocyanine</subject><subject>pro-apoptotic proteins</subject><subject>Protease</subject><subject>Protein Transport - drug effects</subject><subject>Protein Transport - radiation effects</subject><subject>Proteins</subject><subject>Radiation, Ionizing</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - radiation effects</subject><subject>zinc</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v3CAQhlHVqEnT_oOq9TE92B0MLHCpVEX9WGmlHtqcEQbcnZVttuCtuvn1Yes0x0QgwcAzM_C-hLyh0FCgqw-7psPowtC0QFkDqgHaPiMXVElVCyXF87JnQtatbMU5eZnzDgCoaNkLct4yrTlX6oL4zTHHHEc7VHby1YhzdNs4-YTlZB_SGGyHA97aGeNUjcGjnUOubnFyV-v1-8r9u0BX7bfz1g7RHe2EUyhhnMv4iw7n4yty1tshh9f36yW5-fL55_W3evP96_r606Z2XLRzLW2vlWa6Vb2zYDsupSvTe0qlUF5aCIL74Loe-pXumWddUNxrVmKhHWOX5Gqpu0_x9yHk2YyYi0SDnUI8ZENXUgGoosjTqGCgi5RcPo1yznixROiC8gV1KeacQm_2CUebjoaCOblmdmZxzZxcM6BMca2kvb3vcOiKxA9J_20qwLsF6G009lfCbG5-lAorOH0H6Knzx4UIRd8_GJLJDsPkimEpuNn4iI-_4Q4IyrVM</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Marino, Julieta</creator><creator>García Vior, María C.</creator><creator>Furmento, Verónica A.</creator><creator>Blank, Viviana C.</creator><creator>Awruch, Josefina</creator><creator>Roguin, Leonor P.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity</title><author>Marino, Julieta ; García Vior, María C. ; Furmento, Verónica A. ; Blank, Viviana C. ; Awruch, Josefina ; Roguin, Leonor P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-7af9893928fca0ab477c77cdd11758d7a0e54decbf0f69f3d3be84d93f0f59c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acridine orange</topic><topic>Activation</topic><topic>antioxidants</topic><topic>Apoptosis</topic><topic>Bcl-2 family proteins</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>caspase-3</topic><topic>caspase-8</topic><topic>Caspases - metabolism</topic><topic>cathepsin D</topic><topic>Cathepsins - antagonists & inhibitors</topic><topic>Cathepsins - metabolism</topic><topic>Cationic</topic><topic>Cell Death - drug effects</topic><topic>Cell Death - radiation effects</topic><topic>Cell Line, Tumor</topic><topic>cell proliferation</topic><topic>Cleavage</topic><topic>cytochrome c</topic><topic>Cytochromes c - metabolism</topic><topic>cytosol</topic><topic>cytotoxicity</topic><topic>Dermatitis, Phototoxic - metabolism</topic><topic>Dermatitis, Phototoxic - pathology</topic><topic>drug therapy</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - radiation effects</topic><topic>fluorescence</topic><topic>Humans</topic><topic>Indoles - chemistry</topic><topic>Indoles - toxicity</topic><topic>Intracellular Membranes - drug effects</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - radiation effects</topic><topic>Lysosomal proteases</topic><topic>Lysosomes</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - radiation effects</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Potential, Mitochondrial - radiation effects</topic><topic>Membranes</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - radiation effects</topic><topic>Models, Biological</topic><topic>nasopharynx</topic><topic>neoplasm cells</topic><topic>Organometallic Compounds - chemistry</topic><topic>Organometallic Compounds - toxicity</topic><topic>Pathways</topic><topic>Permeability - drug effects</topic><topic>Permeability - radiation effects</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>phototoxicity</topic><topic>Phthalocyanine</topic><topic>pro-apoptotic proteins</topic><topic>Protease</topic><topic>Protein Transport - drug effects</topic><topic>Protein Transport - radiation effects</topic><topic>Proteins</topic><topic>Radiation, Ionizing</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - radiation effects</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marino, Julieta</creatorcontrib><creatorcontrib>García Vior, María C.</creatorcontrib><creatorcontrib>Furmento, Verónica A.</creatorcontrib><creatorcontrib>Blank, Viviana C.</creatorcontrib><creatorcontrib>Awruch, Josefina</creatorcontrib><creatorcontrib>Roguin, Leonor P.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The international journal of biochemistry & cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marino, Julieta</au><au>García Vior, María C.</au><au>Furmento, Verónica A.</au><au>Blank, Viviana C.</au><au>Awruch, Josefina</au><au>Roguin, Leonor P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity</atitle><jtitle>The international journal of biochemistry & cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>45</volume><issue>11</issue><spage>2553</spage><epage>2562</epage><pages>2553-2562</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>•We studied the mechanism of antitumor action of the cationic phthalocyanine Pc13.•Pc13 induced ROS production and the early permeabilization of lysosomal membrane.•Lysosome disruption was followed by activation of the mitochondrial apoptotic pathway.•A caspase-dependent apoptotic response was triggered downstream mitochondria damage.•A model of Pc13-induced apoptotic pathway in KB cells is proposed.
In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced a caspase-dependent apoptotic response, being activation of caspase-8, -9 and -3 the result of a post-mitochondrial event.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>23994488</pmid><doi>10.1016/j.biocel.2013.08.012</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1357-2725 |
ispartof | The international journal of biochemistry & cell biology, 2013-11, Vol.45 (11), p.2553-2562 |
issn | 1357-2725 1878-5875 |
language | eng |
recordid | cdi_proquest_miscellaneous_1678008272 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | acridine orange Activation antioxidants Apoptosis Bcl-2 family proteins bcl-2-Associated X Protein - metabolism caspase-3 caspase-8 Caspases - metabolism cathepsin D Cathepsins - antagonists & inhibitors Cathepsins - metabolism Cationic Cell Death - drug effects Cell Death - radiation effects Cell Line, Tumor cell proliferation Cleavage cytochrome c Cytochromes c - metabolism cytosol cytotoxicity Dermatitis, Phototoxic - metabolism Dermatitis, Phototoxic - pathology drug therapy Enzyme Activation - drug effects Enzyme Activation - radiation effects fluorescence Humans Indoles - chemistry Indoles - toxicity Intracellular Membranes - drug effects Intracellular Membranes - metabolism Intracellular Membranes - radiation effects Lysosomal proteases Lysosomes Lysosomes - drug effects Lysosomes - metabolism Lysosomes - radiation effects Membrane Potential, Mitochondrial - drug effects Membrane Potential, Mitochondrial - radiation effects Membranes mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondria - radiation effects Models, Biological nasopharynx neoplasm cells Organometallic Compounds - chemistry Organometallic Compounds - toxicity Pathways Permeability - drug effects Permeability - radiation effects Photochemotherapy Photodynamic therapy phototoxicity Phthalocyanine pro-apoptotic proteins Protease Protein Transport - drug effects Protein Transport - radiation effects Proteins Radiation, Ionizing reactive oxygen species Reactive Oxygen Species - metabolism Signal Transduction - drug effects Signal Transduction - radiation effects zinc |
title | Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lysosomal%20and%20mitochondrial%20permeabilization%20mediates%20zinc(II)%20cationic%20phthalocyanine%20phototoxicity&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Marino,%20Julieta&rft.date=2013-11-01&rft.volume=45&rft.issue=11&rft.spage=2553&rft.epage=2562&rft.pages=2553-2562&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2013.08.012&rft_dat=%3Cproquest_cross%3E1530987847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443410159&rft_id=info:pmid/23994488&rft_els_id=S135727251300280X&rfr_iscdi=true |