Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory
This paper presents a simple and effective formulation based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) to investigate the static and dynamic behavior of functionally graded carbon nano-reinforced composite plates. The material properties of functionally graded c...
Gespeichert in:
Veröffentlicht in: | Composite structures 2015-05, Vol.123, p.137-149 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a simple and effective formulation based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) to investigate the static and dynamic behavior of functionally graded carbon nano-reinforced composite plates. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are assumed to be graded through the thickness direction according to several linear distributions of the volume fraction of carbon nanotubes. The governing equation is approximated according to the HSDT model using isogeometric elements based on Non-Uniform Rational B-Spline (NURBS) basis functions. This achieves naturally any desired degree of continuity through the choice of the interpolation order, so that the method easily fulfils the C1-continuity requirement of the HSDT model. The accuracy and reliability of the proposed method is verified by comparing its numerical predictions with those of other available numerical approaches. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2014.12.021 |