In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs

A co-delivery strategy has been developed to achieve the synergistic effect of hydrophobic drug (CPT) and hydrophilic drug (DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin@calcium phosphate–doxorubicin nanoparticles (AG/CPT@CaP–DOX). [Display omitted] A co-delivery strateg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2015-03, Vol.15, p.191-199
Hauptverfasser: Li, Wei-Ming, Su, Chia-Wei, Chen, Yu-Wei, Chen, San-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue
container_start_page 191
container_title Acta biomaterialia
container_volume 15
creator Li, Wei-Ming
Su, Chia-Wei
Chen, Yu-Wei
Chen, San-Yuan
description A co-delivery strategy has been developed to achieve the synergistic effect of hydrophobic drug (CPT) and hydrophilic drug (DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin@calcium phosphate–doxorubicin nanoparticles (AG/CPT@CaP–DOX). [Display omitted] A co-delivery strategy has been developed to achieve the synergistic effect of a hydrophobic drug (camptothecin, CPT) and a hydrophilic drug (doxorubicin, DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin @calcium phosphate–doxorubicin (AG/CPT@CaP–DOX) nanoparticles as a carriers in order to replace double emulsions while preserving the advantages of inorganic materials. The hydrophobic agent (CPT) was encapsulated via emulsion with an amphiphilic gelatin core, and subsequently mineralized by CaP–hydrophilic drug (DOX) through precipitation to form a CaP shell on the CPT–AG amphiphilic gelatin core so that drug molecules with different characteristics (i.e. hydrophobic and hydrophilic) can be encapsulated in different regions to avoid their interaction. The existence of the CaP shell can protect the DOX against free release and cause an increased transfer of DOX across membranes, overcoming multidrug resistance. Release studies from core–shell carriers showed the possibility of achieving sequential release of more than one type of drug by controlling the pH-sensitive CaP shell and degradable AG core. The highly pH-responsive behavior of the carrier can modulate the dual-drug-release of DOX/CPT, specifically in acidic intracellular pH environments. The AG/CPT@CaP-DOX nanoparticles also exhibited higher drug efficiencies against MCF-7/ADR cells than MCF-7 cells, thanks to a synergistic cell cycle arrest/apoptosis-inducing effect between CPT and DOX. As such, this core–shell system can serve as a general platform for the localized, controlled, sequential delivery of multiple drugs to treat several diseases, especially for multidrug-resistant cancer cells.
doi_str_mv 10.1016/j.actbio.2014.12.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678004875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706114005777</els_id><sourcerecordid>1673387809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-8685ac07bb4756478d88890393054179fa676bbb96d46a7281edd9d7bf1714693</originalsourceid><addsrcrecordid>eNqNkc2KFDEUhYMoztj6BiJZuqkyqcpfbQRp_wYGxsUI7kIquTWdJlUpk5SgT-Ejm6ZHlzIQSC6cc-7N_RB6SUlLCRVvjq2xZfSx7QhlLe1aQvtH6JIqqRrJhXpc35J1jSSCXqBnOR8J6RXt1FN00XHOOt7zS_T7asHZlw2_v_nWWBOs32a8HmJeD6YAnv0CyQT_Cxzef7ltzLwefD3BW3wHwRS_4MUscTWpeBsATzFhv5RkLISwBZOwjbWMIdSEDN83WIo3AScIYDLgOOF5C8Wv1evSdpefoyeTCRle3N879PXjh9v95-b65tPV_t11Y9mgSqOE4sYSOY6sfpZJ5ZRSA-mHnnBG5TAZIcU4joNwTBjZKQrODU6OE5WUiaHfodfn3DXFOlUuevb5NLRZIG5ZUyEVIUxJ_hBp39e1k4ekckFYzyuKHWJnqU0x5wSTXpOfTfqpKdEnwvqoz4T1ibCmna6Eq-3VfYdtnMH9M_1FWgVvzwKo2_vhIelsPSwWnE9gi3bR_7_DH3GTuoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656043500</pqid></control><display><type>article</type><title>In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Wei-Ming ; Su, Chia-Wei ; Chen, Yu-Wei ; Chen, San-Yuan</creator><creatorcontrib>Li, Wei-Ming ; Su, Chia-Wei ; Chen, Yu-Wei ; Chen, San-Yuan</creatorcontrib><description>A co-delivery strategy has been developed to achieve the synergistic effect of hydrophobic drug (CPT) and hydrophilic drug (DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin@calcium phosphate–doxorubicin nanoparticles (AG/CPT@CaP–DOX). [Display omitted] A co-delivery strategy has been developed to achieve the synergistic effect of a hydrophobic drug (camptothecin, CPT) and a hydrophilic drug (doxorubicin, DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin @calcium phosphate–doxorubicin (AG/CPT@CaP–DOX) nanoparticles as a carriers in order to replace double emulsions while preserving the advantages of inorganic materials. The hydrophobic agent (CPT) was encapsulated via emulsion with an amphiphilic gelatin core, and subsequently mineralized by CaP–hydrophilic drug (DOX) through precipitation to form a CaP shell on the CPT–AG amphiphilic gelatin core so that drug molecules with different characteristics (i.e. hydrophobic and hydrophilic) can be encapsulated in different regions to avoid their interaction. The existence of the CaP shell can protect the DOX against free release and cause an increased transfer of DOX across membranes, overcoming multidrug resistance. Release studies from core–shell carriers showed the possibility of achieving sequential release of more than one type of drug by controlling the pH-sensitive CaP shell and degradable AG core. The highly pH-responsive behavior of the carrier can modulate the dual-drug-release of DOX/CPT, specifically in acidic intracellular pH environments. The AG/CPT@CaP-DOX nanoparticles also exhibited higher drug efficiencies against MCF-7/ADR cells than MCF-7 cells, thanks to a synergistic cell cycle arrest/apoptosis-inducing effect between CPT and DOX. As such, this core–shell system can serve as a general platform for the localized, controlled, sequential delivery of multiple drugs to treat several diseases, especially for multidrug-resistant cancer cells.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2014.12.013</identifier><identifier>PMID: 25542535</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amphiphilic gelatin ; Calcium phosphate ; Calcium Phosphates - chemistry ; Camptothecin - pharmacology ; Carriers ; Carriers, Drug ; Cell Survival - drug effects ; Delayed-Action Preparations ; Diseases ; Doxorubicin - pharmacology ; Drug Liberation ; Drug release ; Drugs ; Encapsulation ; Flow Cytometry ; Gelatin - chemistry ; Gelatins ; Humans ; Hydrophobic and Hydrophilic Interactions ; Intracellular Space - chemistry ; Light ; MCF-7 Cells ; Multidrug resistance ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanostructure ; Particle Size ; pH-sensitivity ; Phosphates ; Scattering, Radiation ; Surface-Active Agents - chemistry</subject><ispartof>Acta biomaterialia, 2015-03, Vol.15, p.191-199</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-8685ac07bb4756478d88890393054179fa676bbb96d46a7281edd9d7bf1714693</citedby><cites>FETCH-LOGICAL-c498t-8685ac07bb4756478d88890393054179fa676bbb96d46a7281edd9d7bf1714693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2014.12.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25542535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wei-Ming</creatorcontrib><creatorcontrib>Su, Chia-Wei</creatorcontrib><creatorcontrib>Chen, Yu-Wei</creatorcontrib><creatorcontrib>Chen, San-Yuan</creatorcontrib><title>In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>A co-delivery strategy has been developed to achieve the synergistic effect of hydrophobic drug (CPT) and hydrophilic drug (DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin@calcium phosphate–doxorubicin nanoparticles (AG/CPT@CaP–DOX). [Display omitted] A co-delivery strategy has been developed to achieve the synergistic effect of a hydrophobic drug (camptothecin, CPT) and a hydrophilic drug (doxorubicin, DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin @calcium phosphate–doxorubicin (AG/CPT@CaP–DOX) nanoparticles as a carriers in order to replace double emulsions while preserving the advantages of inorganic materials. The hydrophobic agent (CPT) was encapsulated via emulsion with an amphiphilic gelatin core, and subsequently mineralized by CaP–hydrophilic drug (DOX) through precipitation to form a CaP shell on the CPT–AG amphiphilic gelatin core so that drug molecules with different characteristics (i.e. hydrophobic and hydrophilic) can be encapsulated in different regions to avoid their interaction. The existence of the CaP shell can protect the DOX against free release and cause an increased transfer of DOX across membranes, overcoming multidrug resistance. Release studies from core–shell carriers showed the possibility of achieving sequential release of more than one type of drug by controlling the pH-sensitive CaP shell and degradable AG core. The highly pH-responsive behavior of the carrier can modulate the dual-drug-release of DOX/CPT, specifically in acidic intracellular pH environments. The AG/CPT@CaP-DOX nanoparticles also exhibited higher drug efficiencies against MCF-7/ADR cells than MCF-7 cells, thanks to a synergistic cell cycle arrest/apoptosis-inducing effect between CPT and DOX. As such, this core–shell system can serve as a general platform for the localized, controlled, sequential delivery of multiple drugs to treat several diseases, especially for multidrug-resistant cancer cells.</description><subject>Amphiphilic gelatin</subject><subject>Calcium phosphate</subject><subject>Calcium Phosphates - chemistry</subject><subject>Camptothecin - pharmacology</subject><subject>Carriers</subject><subject>Carriers, Drug</subject><subject>Cell Survival - drug effects</subject><subject>Delayed-Action Preparations</subject><subject>Diseases</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug Liberation</subject><subject>Drug release</subject><subject>Drugs</subject><subject>Encapsulation</subject><subject>Flow Cytometry</subject><subject>Gelatin - chemistry</subject><subject>Gelatins</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Intracellular Space - chemistry</subject><subject>Light</subject><subject>MCF-7 Cells</subject><subject>Multidrug resistance</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanostructure</subject><subject>Particle Size</subject><subject>pH-sensitivity</subject><subject>Phosphates</subject><subject>Scattering, Radiation</subject><subject>Surface-Active Agents - chemistry</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2KFDEUhYMoztj6BiJZuqkyqcpfbQRp_wYGxsUI7kIquTWdJlUpk5SgT-Ejm6ZHlzIQSC6cc-7N_RB6SUlLCRVvjq2xZfSx7QhlLe1aQvtH6JIqqRrJhXpc35J1jSSCXqBnOR8J6RXt1FN00XHOOt7zS_T7asHZlw2_v_nWWBOs32a8HmJeD6YAnv0CyQT_Cxzef7ltzLwefD3BW3wHwRS_4MUscTWpeBsATzFhv5RkLISwBZOwjbWMIdSEDN83WIo3AScIYDLgOOF5C8Wv1evSdpefoyeTCRle3N879PXjh9v95-b65tPV_t11Y9mgSqOE4sYSOY6sfpZJ5ZRSA-mHnnBG5TAZIcU4joNwTBjZKQrODU6OE5WUiaHfodfn3DXFOlUuevb5NLRZIG5ZUyEVIUxJ_hBp39e1k4ekckFYzyuKHWJnqU0x5wSTXpOfTfqpKdEnwvqoz4T1ibCmna6Eq-3VfYdtnMH9M_1FWgVvzwKo2_vhIelsPSwWnE9gi3bR_7_DH3GTuoQ</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Li, Wei-Ming</creator><creator>Su, Chia-Wei</creator><creator>Chen, Yu-Wei</creator><creator>Chen, San-Yuan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs</title><author>Li, Wei-Ming ; Su, Chia-Wei ; Chen, Yu-Wei ; Chen, San-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-8685ac07bb4756478d88890393054179fa676bbb96d46a7281edd9d7bf1714693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amphiphilic gelatin</topic><topic>Calcium phosphate</topic><topic>Calcium Phosphates - chemistry</topic><topic>Camptothecin - pharmacology</topic><topic>Carriers</topic><topic>Carriers, Drug</topic><topic>Cell Survival - drug effects</topic><topic>Delayed-Action Preparations</topic><topic>Diseases</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug Liberation</topic><topic>Drug release</topic><topic>Drugs</topic><topic>Encapsulation</topic><topic>Flow Cytometry</topic><topic>Gelatin - chemistry</topic><topic>Gelatins</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Intracellular Space - chemistry</topic><topic>Light</topic><topic>MCF-7 Cells</topic><topic>Multidrug resistance</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanostructure</topic><topic>Particle Size</topic><topic>pH-sensitivity</topic><topic>Phosphates</topic><topic>Scattering, Radiation</topic><topic>Surface-Active Agents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei-Ming</creatorcontrib><creatorcontrib>Su, Chia-Wei</creatorcontrib><creatorcontrib>Chen, Yu-Wei</creatorcontrib><creatorcontrib>Chen, San-Yuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei-Ming</au><au>Su, Chia-Wei</au><au>Chen, Yu-Wei</au><au>Chen, San-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-03</date><risdate>2015</risdate><volume>15</volume><spage>191</spage><epage>199</epage><pages>191-199</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>A co-delivery strategy has been developed to achieve the synergistic effect of hydrophobic drug (CPT) and hydrophilic drug (DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin@calcium phosphate–doxorubicin nanoparticles (AG/CPT@CaP–DOX). [Display omitted] A co-delivery strategy has been developed to achieve the synergistic effect of a hydrophobic drug (camptothecin, CPT) and a hydrophilic drug (doxorubicin, DOX) by utilizing the unique structure of amphiphilic gelatin/camptothecin @calcium phosphate–doxorubicin (AG/CPT@CaP–DOX) nanoparticles as a carriers in order to replace double emulsions while preserving the advantages of inorganic materials. The hydrophobic agent (CPT) was encapsulated via emulsion with an amphiphilic gelatin core, and subsequently mineralized by CaP–hydrophilic drug (DOX) through precipitation to form a CaP shell on the CPT–AG amphiphilic gelatin core so that drug molecules with different characteristics (i.e. hydrophobic and hydrophilic) can be encapsulated in different regions to avoid their interaction. The existence of the CaP shell can protect the DOX against free release and cause an increased transfer of DOX across membranes, overcoming multidrug resistance. Release studies from core–shell carriers showed the possibility of achieving sequential release of more than one type of drug by controlling the pH-sensitive CaP shell and degradable AG core. The highly pH-responsive behavior of the carrier can modulate the dual-drug-release of DOX/CPT, specifically in acidic intracellular pH environments. The AG/CPT@CaP-DOX nanoparticles also exhibited higher drug efficiencies against MCF-7/ADR cells than MCF-7 cells, thanks to a synergistic cell cycle arrest/apoptosis-inducing effect between CPT and DOX. As such, this core–shell system can serve as a general platform for the localized, controlled, sequential delivery of multiple drugs to treat several diseases, especially for multidrug-resistant cancer cells.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25542535</pmid><doi>10.1016/j.actbio.2014.12.013</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2015-03, Vol.15, p.191-199
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1678004875
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Amphiphilic gelatin
Calcium phosphate
Calcium Phosphates - chemistry
Camptothecin - pharmacology
Carriers
Carriers, Drug
Cell Survival - drug effects
Delayed-Action Preparations
Diseases
Doxorubicin - pharmacology
Drug Liberation
Drug release
Drugs
Encapsulation
Flow Cytometry
Gelatin - chemistry
Gelatins
Humans
Hydrophobic and Hydrophilic Interactions
Intracellular Space - chemistry
Light
MCF-7 Cells
Multidrug resistance
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanostructure
Particle Size
pH-sensitivity
Phosphates
Scattering, Radiation
Surface-Active Agents - chemistry
title In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20DOX-calcium%20phosphate%20mineralized%20CPT-amphiphilic%20gelatin%20nanoparticle%20for%20intracellular%20controlled%20sequential%20release%20of%20multiple%20drugs&rft.jtitle=Acta%20biomaterialia&rft.au=Li,%20Wei-Ming&rft.date=2015-03&rft.volume=15&rft.spage=191&rft.epage=199&rft.pages=191-199&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2014.12.013&rft_dat=%3Cproquest_cross%3E1673387809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656043500&rft_id=info:pmid/25542535&rft_els_id=S1742706114005777&rfr_iscdi=true