Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images
Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2015-04, Vol.16 (2), p.825-833 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 833 |
---|---|
container_issue | 2 |
container_start_page | 825 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 16 |
creator | Guo, Kun-Yi Hoare, Edward G. Jasteh, Donya Sheng, Xin-Qing Gashinova, Marina |
description | Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images are quite different from that of optical images, and even physically continuous features, such as road edges, will be presented as a set of bright points or spots distributed along the roadside. Therefore, discrimination of the radar features is of paramount importance in automotive imaging systems. To tackle this problem, an approach called the stripe Hough transform (HT) is introduced in this paper, allowing enhanced extraction of the geometry of the road path. The performance of the approach is demonstrated by comparison of extracted features from MMW images with the real geometry of the road and with the results of processing by classical HT. |
doi_str_mv | 10.1109/TITS.2014.2342875 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678004192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6882781</ieee_id><sourcerecordid>1678004192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-23cacb694c37cee4de3420d9ac4073dfc3886db3d2667fa1b2695ac56431a5663</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_ZHKW0tlAR-oHewnYzSbck2bqbCv57E1o8eJpheN6X4Ymie4JHhOD0eT1fr0YUEz6ijFOViItoQIRQMcZEXvY75XGKBb6ObkLYd1cuCBlEn0unczTJS0BLMK5sbGtdgzbBNiVqd4BWrbcHQDN3LHdo7XUTCudrNPWuRm-2qmwNLfj4Q393DTrXHs1rXUK4ja4KXQW4O89htJlO1uNZvHh_nY9fFrFhqWxjyow2W5lywxIDwHPo3sd5qg3HCcsLw5SS-ZblVMqk0GRLZSq0EZIzooWUbBg9nXoP3n0dIbRZbYOBqtINuGPIiEwUxpyktEMf_6F7d_RN911HKUFSznhfSE6U8S4ED0V28LbW_icjOOtdZ73rrHednV13mYdTxgLAHy-Vooki7BcvFnma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685194346</pqid></control><display><type>article</type><title>Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Kun-Yi ; Hoare, Edward G. ; Jasteh, Donya ; Sheng, Xin-Qing ; Gashinova, Marina</creator><creatorcontrib>Guo, Kun-Yi ; Hoare, Edward G. ; Jasteh, Donya ; Sheng, Xin-Qing ; Gashinova, Marina</creatorcontrib><description>Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images are quite different from that of optical images, and even physically continuous features, such as road edges, will be presented as a set of bright points or spots distributed along the roadside. Therefore, discrimination of the radar features is of paramount importance in automotive imaging systems. To tackle this problem, an approach called the stripe Hough transform (HT) is introduced in this paper, allowing enhanced extraction of the geometry of the road path. The performance of the approach is demonstrated by comparison of extracted features from MMW images with the real geometry of the road and with the results of processing by classical HT.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2014.2342875</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive cruise control (ACC) ; Feature extraction ; Gray-scale ; Heat treatment ; Hough transform (HT) ; Hough transforms ; Image edge detection ; Laser radar ; Lighting ; millimeter-wave (MMW) radars ; Object recognition ; Radar ; Radar imaging ; road features ; Roads ; Signatures</subject><ispartof>IEEE transactions on intelligent transportation systems, 2015-04, Vol.16 (2), p.825-833</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-23cacb694c37cee4de3420d9ac4073dfc3886db3d2667fa1b2695ac56431a5663</citedby><cites>FETCH-LOGICAL-c396t-23cacb694c37cee4de3420d9ac4073dfc3886db3d2667fa1b2695ac56431a5663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6882781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6882781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Kun-Yi</creatorcontrib><creatorcontrib>Hoare, Edward G.</creatorcontrib><creatorcontrib>Jasteh, Donya</creatorcontrib><creatorcontrib>Sheng, Xin-Qing</creatorcontrib><creatorcontrib>Gashinova, Marina</creatorcontrib><title>Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images are quite different from that of optical images, and even physically continuous features, such as road edges, will be presented as a set of bright points or spots distributed along the roadside. Therefore, discrimination of the radar features is of paramount importance in automotive imaging systems. To tackle this problem, an approach called the stripe Hough transform (HT) is introduced in this paper, allowing enhanced extraction of the geometry of the road path. The performance of the approach is demonstrated by comparison of extracted features from MMW images with the real geometry of the road and with the results of processing by classical HT.</description><subject>Adaptive cruise control (ACC)</subject><subject>Feature extraction</subject><subject>Gray-scale</subject><subject>Heat treatment</subject><subject>Hough transform (HT)</subject><subject>Hough transforms</subject><subject>Image edge detection</subject><subject>Laser radar</subject><subject>Lighting</subject><subject>millimeter-wave (MMW) radars</subject><subject>Object recognition</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>road features</subject><subject>Roads</subject><subject>Signatures</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_ZHKW0tlAR-oHewnYzSbck2bqbCv57E1o8eJpheN6X4Ymie4JHhOD0eT1fr0YUEz6ijFOViItoQIRQMcZEXvY75XGKBb6ObkLYd1cuCBlEn0unczTJS0BLMK5sbGtdgzbBNiVqd4BWrbcHQDN3LHdo7XUTCudrNPWuRm-2qmwNLfj4Q393DTrXHs1rXUK4ja4KXQW4O89htJlO1uNZvHh_nY9fFrFhqWxjyow2W5lywxIDwHPo3sd5qg3HCcsLw5SS-ZblVMqk0GRLZSq0EZIzooWUbBg9nXoP3n0dIbRZbYOBqtINuGPIiEwUxpyktEMf_6F7d_RN911HKUFSznhfSE6U8S4ED0V28LbW_icjOOtdZ73rrHednV13mYdTxgLAHy-Vooki7BcvFnma</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Guo, Kun-Yi</creator><creator>Hoare, Edward G.</creator><creator>Jasteh, Donya</creator><creator>Sheng, Xin-Qing</creator><creator>Gashinova, Marina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>20150401</creationdate><title>Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images</title><author>Guo, Kun-Yi ; Hoare, Edward G. ; Jasteh, Donya ; Sheng, Xin-Qing ; Gashinova, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-23cacb694c37cee4de3420d9ac4073dfc3886db3d2667fa1b2695ac56431a5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive cruise control (ACC)</topic><topic>Feature extraction</topic><topic>Gray-scale</topic><topic>Heat treatment</topic><topic>Hough transform (HT)</topic><topic>Hough transforms</topic><topic>Image edge detection</topic><topic>Laser radar</topic><topic>Lighting</topic><topic>millimeter-wave (MMW) radars</topic><topic>Object recognition</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>road features</topic><topic>Roads</topic><topic>Signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Kun-Yi</creatorcontrib><creatorcontrib>Hoare, Edward G.</creatorcontrib><creatorcontrib>Jasteh, Donya</creatorcontrib><creatorcontrib>Sheng, Xin-Qing</creatorcontrib><creatorcontrib>Gashinova, Marina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Kun-Yi</au><au>Hoare, Edward G.</au><au>Jasteh, Donya</au><au>Sheng, Xin-Qing</au><au>Gashinova, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>16</volume><issue>2</issue><spage>825</spage><epage>833</epage><pages>825-833</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images are quite different from that of optical images, and even physically continuous features, such as road edges, will be presented as a set of bright points or spots distributed along the roadside. Therefore, discrimination of the radar features is of paramount importance in automotive imaging systems. To tackle this problem, an approach called the stripe Hough transform (HT) is introduced in this paper, allowing enhanced extraction of the geometry of the road path. The performance of the approach is demonstrated by comparison of extracted features from MMW images with the real geometry of the road and with the results of processing by classical HT.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2014.2342875</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2015-04, Vol.16 (2), p.825-833 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_miscellaneous_1678004192 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive cruise control (ACC) Feature extraction Gray-scale Heat treatment Hough transform (HT) Hough transforms Image edge detection Laser radar Lighting millimeter-wave (MMW) radars Object recognition Radar Radar imaging road features Roads Signatures |
title | Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Road%20Edge%20Recognition%20Using%20the%20Stripe%20Hough%20Transform%20From%20Millimeter-Wave%20Radar%20Images&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Guo,%20Kun-Yi&rft.date=2015-04-01&rft.volume=16&rft.issue=2&rft.spage=825&rft.epage=833&rft.pages=825-833&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2014.2342875&rft_dat=%3Cproquest_RIE%3E1678004192%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685194346&rft_id=info:pmid/&rft_ieee_id=6882781&rfr_iscdi=true |