Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images

Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2015-04, Vol.16 (2), p.825-833
Hauptverfasser: Guo, Kun-Yi, Hoare, Edward G., Jasteh, Donya, Sheng, Xin-Qing, Gashinova, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 2
container_start_page 825
container_title IEEE transactions on intelligent transportation systems
container_volume 16
creator Guo, Kun-Yi
Hoare, Edward G.
Jasteh, Donya
Sheng, Xin-Qing
Gashinova, Marina
description Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images are quite different from that of optical images, and even physically continuous features, such as road edges, will be presented as a set of bright points or spots distributed along the roadside. Therefore, discrimination of the radar features is of paramount importance in automotive imaging systems. To tackle this problem, an approach called the stripe Hough transform (HT) is introduced in this paper, allowing enhanced extraction of the geometry of the road path. The performance of the approach is demonstrated by comparison of extracted features from MMW images with the real geometry of the road and with the results of processing by classical HT.
doi_str_mv 10.1109/TITS.2014.2342875
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678004192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6882781</ieee_id><sourcerecordid>1678004192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-23cacb694c37cee4de3420d9ac4073dfc3886db3d2667fa1b2695ac56431a5663</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_ZHKW0tlAR-oHewnYzSbck2bqbCv57E1o8eJpheN6X4Ymie4JHhOD0eT1fr0YUEz6ijFOViItoQIRQMcZEXvY75XGKBb6ObkLYd1cuCBlEn0unczTJS0BLMK5sbGtdgzbBNiVqd4BWrbcHQDN3LHdo7XUTCudrNPWuRm-2qmwNLfj4Q393DTrXHs1rXUK4ja4KXQW4O89htJlO1uNZvHh_nY9fFrFhqWxjyow2W5lywxIDwHPo3sd5qg3HCcsLw5SS-ZblVMqk0GRLZSq0EZIzooWUbBg9nXoP3n0dIbRZbYOBqtINuGPIiEwUxpyktEMf_6F7d_RN911HKUFSznhfSE6U8S4ED0V28LbW_icjOOtdZ73rrHednV13mYdTxgLAHy-Vooki7BcvFnma</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685194346</pqid></control><display><type>article</type><title>Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Kun-Yi ; Hoare, Edward G. ; Jasteh, Donya ; Sheng, Xin-Qing ; Gashinova, Marina</creator><creatorcontrib>Guo, Kun-Yi ; Hoare, Edward G. ; Jasteh, Donya ; Sheng, Xin-Qing ; Gashinova, Marina</creatorcontrib><description>Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images are quite different from that of optical images, and even physically continuous features, such as road edges, will be presented as a set of bright points or spots distributed along the roadside. Therefore, discrimination of the radar features is of paramount importance in automotive imaging systems. To tackle this problem, an approach called the stripe Hough transform (HT) is introduced in this paper, allowing enhanced extraction of the geometry of the road path. The performance of the approach is demonstrated by comparison of extracted features from MMW images with the real geometry of the road and with the results of processing by classical HT.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2014.2342875</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive cruise control (ACC) ; Feature extraction ; Gray-scale ; Heat treatment ; Hough transform (HT) ; Hough transforms ; Image edge detection ; Laser radar ; Lighting ; millimeter-wave (MMW) radars ; Object recognition ; Radar ; Radar imaging ; road features ; Roads ; Signatures</subject><ispartof>IEEE transactions on intelligent transportation systems, 2015-04, Vol.16 (2), p.825-833</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-23cacb694c37cee4de3420d9ac4073dfc3886db3d2667fa1b2695ac56431a5663</citedby><cites>FETCH-LOGICAL-c396t-23cacb694c37cee4de3420d9ac4073dfc3886db3d2667fa1b2695ac56431a5663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6882781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6882781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Kun-Yi</creatorcontrib><creatorcontrib>Hoare, Edward G.</creatorcontrib><creatorcontrib>Jasteh, Donya</creatorcontrib><creatorcontrib>Sheng, Xin-Qing</creatorcontrib><creatorcontrib>Gashinova, Marina</creatorcontrib><title>Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images are quite different from that of optical images, and even physically continuous features, such as road edges, will be presented as a set of bright points or spots distributed along the roadside. Therefore, discrimination of the radar features is of paramount importance in automotive imaging systems. To tackle this problem, an approach called the stripe Hough transform (HT) is introduced in this paper, allowing enhanced extraction of the geometry of the road path. The performance of the approach is demonstrated by comparison of extracted features from MMW images with the real geometry of the road and with the results of processing by classical HT.</description><subject>Adaptive cruise control (ACC)</subject><subject>Feature extraction</subject><subject>Gray-scale</subject><subject>Heat treatment</subject><subject>Hough transform (HT)</subject><subject>Hough transforms</subject><subject>Image edge detection</subject><subject>Laser radar</subject><subject>Lighting</subject><subject>millimeter-wave (MMW) radars</subject><subject>Object recognition</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>road features</subject><subject>Roads</subject><subject>Signatures</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSut_ZHKW0tlAR-oHewnYzSbck2bqbCv57E1o8eJpheN6X4Ymie4JHhOD0eT1fr0YUEz6ijFOViItoQIRQMcZEXvY75XGKBb6ObkLYd1cuCBlEn0unczTJS0BLMK5sbGtdgzbBNiVqd4BWrbcHQDN3LHdo7XUTCudrNPWuRm-2qmwNLfj4Q393DTrXHs1rXUK4ja4KXQW4O89htJlO1uNZvHh_nY9fFrFhqWxjyow2W5lywxIDwHPo3sd5qg3HCcsLw5SS-ZblVMqk0GRLZSq0EZIzooWUbBg9nXoP3n0dIbRZbYOBqtINuGPIiEwUxpyktEMf_6F7d_RN911HKUFSznhfSE6U8S4ED0V28LbW_icjOOtdZ73rrHednV13mYdTxgLAHy-Vooki7BcvFnma</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Guo, Kun-Yi</creator><creator>Hoare, Edward G.</creator><creator>Jasteh, Donya</creator><creator>Sheng, Xin-Qing</creator><creator>Gashinova, Marina</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>20150401</creationdate><title>Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images</title><author>Guo, Kun-Yi ; Hoare, Edward G. ; Jasteh, Donya ; Sheng, Xin-Qing ; Gashinova, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-23cacb694c37cee4de3420d9ac4073dfc3886db3d2667fa1b2695ac56431a5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive cruise control (ACC)</topic><topic>Feature extraction</topic><topic>Gray-scale</topic><topic>Heat treatment</topic><topic>Hough transform (HT)</topic><topic>Hough transforms</topic><topic>Image edge detection</topic><topic>Laser radar</topic><topic>Lighting</topic><topic>millimeter-wave (MMW) radars</topic><topic>Object recognition</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>road features</topic><topic>Roads</topic><topic>Signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Kun-Yi</creatorcontrib><creatorcontrib>Hoare, Edward G.</creatorcontrib><creatorcontrib>Jasteh, Donya</creatorcontrib><creatorcontrib>Sheng, Xin-Qing</creatorcontrib><creatorcontrib>Gashinova, Marina</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Kun-Yi</au><au>Hoare, Edward G.</au><au>Jasteh, Donya</au><au>Sheng, Xin-Qing</au><au>Gashinova, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>16</volume><issue>2</issue><spage>825</spage><epage>833</epage><pages>825-833</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Millimeter-wave (MMW) radar, which is used for road feature recognition, has performance that is superior to optical cameras in terms of robustness in different weather and lighting conditions, as well as providing ranging capabilities. However, the signatures of road features in MMW radar images are quite different from that of optical images, and even physically continuous features, such as road edges, will be presented as a set of bright points or spots distributed along the roadside. Therefore, discrimination of the radar features is of paramount importance in automotive imaging systems. To tackle this problem, an approach called the stripe Hough transform (HT) is introduced in this paper, allowing enhanced extraction of the geometry of the road path. The performance of the approach is demonstrated by comparison of extracted features from MMW images with the real geometry of the road and with the results of processing by classical HT.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2014.2342875</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2015-04, Vol.16 (2), p.825-833
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_miscellaneous_1678004192
source IEEE Electronic Library (IEL)
subjects Adaptive cruise control (ACC)
Feature extraction
Gray-scale
Heat treatment
Hough transform (HT)
Hough transforms
Image edge detection
Laser radar
Lighting
millimeter-wave (MMW) radars
Object recognition
Radar
Radar imaging
road features
Roads
Signatures
title Road Edge Recognition Using the Stripe Hough Transform From Millimeter-Wave Radar Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Road%20Edge%20Recognition%20Using%20the%20Stripe%20Hough%20Transform%20From%20Millimeter-Wave%20Radar%20Images&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Guo,%20Kun-Yi&rft.date=2015-04-01&rft.volume=16&rft.issue=2&rft.spage=825&rft.epage=833&rft.pages=825-833&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2014.2342875&rft_dat=%3Cproquest_RIE%3E1678004192%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685194346&rft_id=info:pmid/&rft_ieee_id=6882781&rfr_iscdi=true