Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine

The maximum potential of a dual-loop organic Rankine cycle (ORC) applied to a light-duty diesel engine is analyzed over the engine's operational range by developing a mathematical model based on physical processes and boundary conditions specified according to measured data from an engine test....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2014-06, Vol.67 (1-2), p.168-178
Hauptverfasser: Wang, E.H., Zhang, H.G., Fan, B.Y., Ouyang, M.G., Yang, F.Y., Yang, K., Wang, Z., Zhang, J., Yang, F.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 1-2
container_start_page 168
container_title Applied thermal engineering
container_volume 67
creator Wang, E.H.
Zhang, H.G.
Fan, B.Y.
Ouyang, M.G.
Yang, F.Y.
Yang, K.
Wang, Z.
Zhang, J.
Yang, F.B.
description The maximum potential of a dual-loop organic Rankine cycle (ORC) applied to a light-duty diesel engine is analyzed over the engine's operational range by developing a mathematical model based on physical processes and boundary conditions specified according to measured data from an engine test. We further evaluate the effects of three working parameters—expander isentropic efficiency, evaporation pressure of the high-temperature loop, and condensation temperature of the low-temperature loop—on the performance of the dual-loop ORC system. The results show that using the proposed dual-loop ORC system improves the net power output of a diesel automotive engine by 19–22% in the peak thermal-efficiency region under allowable working conditions of the engine, and by 53–72% in the high-speed and low-load regions. Over the engine's entire operational range, the effective thermal efficiency increases by a maximum of 8%. Moreover, the expander isentropic efficiency and the condensation temperature of the low-temperature loop are two critical parameters that affect combined system performance. •The potential of a dual loop ORC is estimated over the engine's operating region.•Effect of expander isentropic efficiency is analyzed at engine speed of 1800 r/min.•Evaporation pressure and condensation temperature are also evaluated.
doi_str_mv 10.1016/j.applthermaleng.2014.03.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678001933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431114001987</els_id><sourcerecordid>1678001933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-45e056fd4a90f8ad749f5a030236f686eb9e7ba8b33d37594fce7b087ebc4a113</originalsourceid><addsrcrecordid>eNqNkMFq3DAQhn1IIWmSd9AhgV7sSpZsydBLWbppIJBSEshNzMqjRItsuZJ3i98-CrsEekpPo4Fv5h99RXHFaMUoa79uK5gmP79gHMDj-FzVlImK8orW_KQ4Y7zpSsEZOy0-p7SllNVKirPi6RdEGHCOzhAYwS_JJRIsAdLvwJc-hInc_16RtKQZB2JDJH8hP8kLwkwimrDHuBwnHCb0JIe7ES-KTxZ8wstjPS8e1z8eVj_Lu_ub29X3u9KIup1L0SBtWtsL6KhV0EvR2QYoz1e3tlUtbjqUG1Abznsum05Yk3uqJG6MAMb4efHlsHeK4c8O06wHlwx6DyOGXdKslSr_tuP8Y7RpJVVcqiaj3w6oiSGliFZP0Q0QF82ofvOtt_pf3_rNt6Zc58vz-PUxCZIBbyOMxqX3HbVqBKOdzNz6wGE2tHcYdTIOR4O9y2pn3Qf3f4GvnFWguQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567083785</pqid></control><display><type>article</type><title>Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, E.H. ; Zhang, H.G. ; Fan, B.Y. ; Ouyang, M.G. ; Yang, F.Y. ; Yang, K. ; Wang, Z. ; Zhang, J. ; Yang, F.B.</creator><creatorcontrib>Wang, E.H. ; Zhang, H.G. ; Fan, B.Y. ; Ouyang, M.G. ; Yang, F.Y. ; Yang, K. ; Wang, Z. ; Zhang, J. ; Yang, F.B.</creatorcontrib><description>The maximum potential of a dual-loop organic Rankine cycle (ORC) applied to a light-duty diesel engine is analyzed over the engine's operational range by developing a mathematical model based on physical processes and boundary conditions specified according to measured data from an engine test. We further evaluate the effects of three working parameters—expander isentropic efficiency, evaporation pressure of the high-temperature loop, and condensation temperature of the low-temperature loop—on the performance of the dual-loop ORC system. The results show that using the proposed dual-loop ORC system improves the net power output of a diesel automotive engine by 19–22% in the peak thermal-efficiency region under allowable working conditions of the engine, and by 53–72% in the high-speed and low-load regions. Over the engine's entire operational range, the effective thermal efficiency increases by a maximum of 8%. Moreover, the expander isentropic efficiency and the condensation temperature of the low-temperature loop are two critical parameters that affect combined system performance. •The potential of a dual loop ORC is estimated over the engine's operating region.•Effect of expander isentropic efficiency is analyzed at engine speed of 1800 r/min.•Evaporation pressure and condensation temperature are also evaluated.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2014.03.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Automotive engines ; Condensing ; Diesel engine ; Diesel engines ; Dual loop ; Energy ; Energy. Thermal use of fuels ; Engine tests ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Heat recovery ; Heat transfer ; Mathematical models ; Organic Rankine cycle ; Parametric analysis ; Rankine cycle ; Theoretical studies. Data and constants. Metering ; Thermal engineering ; Waste heat recovery</subject><ispartof>Applied thermal engineering, 2014-06, Vol.67 (1-2), p.168-178</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-45e056fd4a90f8ad749f5a030236f686eb9e7ba8b33d37594fce7b087ebc4a113</citedby><cites>FETCH-LOGICAL-c426t-45e056fd4a90f8ad749f5a030236f686eb9e7ba8b33d37594fce7b087ebc4a113</cites><orcidid>0000-0002-2219-4964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431114001987$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28541097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, E.H.</creatorcontrib><creatorcontrib>Zhang, H.G.</creatorcontrib><creatorcontrib>Fan, B.Y.</creatorcontrib><creatorcontrib>Ouyang, M.G.</creatorcontrib><creatorcontrib>Yang, F.Y.</creatorcontrib><creatorcontrib>Yang, K.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Yang, F.B.</creatorcontrib><title>Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine</title><title>Applied thermal engineering</title><description>The maximum potential of a dual-loop organic Rankine cycle (ORC) applied to a light-duty diesel engine is analyzed over the engine's operational range by developing a mathematical model based on physical processes and boundary conditions specified according to measured data from an engine test. We further evaluate the effects of three working parameters—expander isentropic efficiency, evaporation pressure of the high-temperature loop, and condensation temperature of the low-temperature loop—on the performance of the dual-loop ORC system. The results show that using the proposed dual-loop ORC system improves the net power output of a diesel automotive engine by 19–22% in the peak thermal-efficiency region under allowable working conditions of the engine, and by 53–72% in the high-speed and low-load regions. Over the engine's entire operational range, the effective thermal efficiency increases by a maximum of 8%. Moreover, the expander isentropic efficiency and the condensation temperature of the low-temperature loop are two critical parameters that affect combined system performance. •The potential of a dual loop ORC is estimated over the engine's operating region.•Effect of expander isentropic efficiency is analyzed at engine speed of 1800 r/min.•Evaporation pressure and condensation temperature are also evaluated.</description><subject>Applied sciences</subject><subject>Automotive engines</subject><subject>Condensing</subject><subject>Diesel engine</subject><subject>Diesel engines</subject><subject>Dual loop</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engine tests</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Heat recovery</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Organic Rankine cycle</subject><subject>Parametric analysis</subject><subject>Rankine cycle</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal engineering</subject><subject>Waste heat recovery</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkMFq3DAQhn1IIWmSd9AhgV7sSpZsydBLWbppIJBSEshNzMqjRItsuZJ3i98-CrsEekpPo4Fv5h99RXHFaMUoa79uK5gmP79gHMDj-FzVlImK8orW_KQ4Y7zpSsEZOy0-p7SllNVKirPi6RdEGHCOzhAYwS_JJRIsAdLvwJc-hInc_16RtKQZB2JDJH8hP8kLwkwimrDHuBwnHCb0JIe7ES-KTxZ8wstjPS8e1z8eVj_Lu_ub29X3u9KIup1L0SBtWtsL6KhV0EvR2QYoz1e3tlUtbjqUG1Abznsum05Yk3uqJG6MAMb4efHlsHeK4c8O06wHlwx6DyOGXdKslSr_tuP8Y7RpJVVcqiaj3w6oiSGliFZP0Q0QF82ofvOtt_pf3_rNt6Zc58vz-PUxCZIBbyOMxqX3HbVqBKOdzNz6wGE2tHcYdTIOR4O9y2pn3Qf3f4GvnFWguQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Wang, E.H.</creator><creator>Zhang, H.G.</creator><creator>Fan, B.Y.</creator><creator>Ouyang, M.G.</creator><creator>Yang, F.Y.</creator><creator>Yang, K.</creator><creator>Wang, Z.</creator><creator>Zhang, J.</creator><creator>Yang, F.B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2219-4964</orcidid></search><sort><creationdate>20140601</creationdate><title>Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine</title><author>Wang, E.H. ; Zhang, H.G. ; Fan, B.Y. ; Ouyang, M.G. ; Yang, F.Y. ; Yang, K. ; Wang, Z. ; Zhang, J. ; Yang, F.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-45e056fd4a90f8ad749f5a030236f686eb9e7ba8b33d37594fce7b087ebc4a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Automotive engines</topic><topic>Condensing</topic><topic>Diesel engine</topic><topic>Diesel engines</topic><topic>Dual loop</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engine tests</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Heat recovery</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Organic Rankine cycle</topic><topic>Parametric analysis</topic><topic>Rankine cycle</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal engineering</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, E.H.</creatorcontrib><creatorcontrib>Zhang, H.G.</creatorcontrib><creatorcontrib>Fan, B.Y.</creatorcontrib><creatorcontrib>Ouyang, M.G.</creatorcontrib><creatorcontrib>Yang, F.Y.</creatorcontrib><creatorcontrib>Yang, K.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Yang, F.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, E.H.</au><au>Zhang, H.G.</au><au>Fan, B.Y.</au><au>Ouyang, M.G.</au><au>Yang, F.Y.</au><au>Yang, K.</au><au>Wang, Z.</au><au>Zhang, J.</au><au>Yang, F.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine</atitle><jtitle>Applied thermal engineering</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>67</volume><issue>1-2</issue><spage>168</spage><epage>178</epage><pages>168-178</pages><issn>1359-4311</issn><abstract>The maximum potential of a dual-loop organic Rankine cycle (ORC) applied to a light-duty diesel engine is analyzed over the engine's operational range by developing a mathematical model based on physical processes and boundary conditions specified according to measured data from an engine test. We further evaluate the effects of three working parameters—expander isentropic efficiency, evaporation pressure of the high-temperature loop, and condensation temperature of the low-temperature loop—on the performance of the dual-loop ORC system. The results show that using the proposed dual-loop ORC system improves the net power output of a diesel automotive engine by 19–22% in the peak thermal-efficiency region under allowable working conditions of the engine, and by 53–72% in the high-speed and low-load regions. Over the engine's entire operational range, the effective thermal efficiency increases by a maximum of 8%. Moreover, the expander isentropic efficiency and the condensation temperature of the low-temperature loop are two critical parameters that affect combined system performance. •The potential of a dual loop ORC is estimated over the engine's operating region.•Effect of expander isentropic efficiency is analyzed at engine speed of 1800 r/min.•Evaporation pressure and condensation temperature are also evaluated.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2014.03.023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2219-4964</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2014-06, Vol.67 (1-2), p.168-178
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1678001933
source Elsevier ScienceDirect Journals
subjects Applied sciences
Automotive engines
Condensing
Diesel engine
Diesel engines
Dual loop
Energy
Energy. Thermal use of fuels
Engine tests
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Heat recovery
Heat transfer
Mathematical models
Organic Rankine cycle
Parametric analysis
Rankine cycle
Theoretical studies. Data and constants. Metering
Thermal engineering
Waste heat recovery
title Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20analysis%20of%20a%20dual-loop%20ORC%20system%20for%20waste%20heat%20recovery%20of%20a%20diesel%20engine&rft.jtitle=Applied%20thermal%20engineering&rft.au=Wang,%20E.H.&rft.date=2014-06-01&rft.volume=67&rft.issue=1-2&rft.spage=168&rft.epage=178&rft.pages=168-178&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2014.03.023&rft_dat=%3Cproquest_cross%3E1678001933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567083785&rft_id=info:pmid/&rft_els_id=S1359431114001987&rfr_iscdi=true