Modelling carbon emissions in electric systems

•We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2014-04, Vol.80, p.573-581
Hauptverfasser: Lau, E.T., Yang, Q., Forbes, A.B., Wright, P., Livina, V.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 581
container_issue
container_start_page 573
container_title Energy conversion and management
container_volume 80
creator Lau, E.T.
Yang, Q.
Forbes, A.B.
Wright, P.
Livina, V.N.
description •We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble Kalman Filter to forecast energy data in these case studies. We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies.
doi_str_mv 10.1016/j.enconman.2014.01.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678000838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890414000909</els_id><sourcerecordid>1559679570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-67d1c9efc83f204d7c3a5abe4cdac29f065ffe6f43344cd69f235d295ecb28be3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKt_QfYieNk1793clOILKl70HLLZiaTsZmuyFfrvTWn12tMwwzevD6FrgiuCibxbVRDsGAYTKooJrzCpMBcnaEaaWpWU0voUzTBRsmwU5ufoIqUVxpgJLGeoehs76HsfvgprYjuGAgafkh9DKnxOerBT9LZI2zTBkC7RmTN9gqtDnKPPp8ePxUu5fH9-XTwsS8u5mkpZd8QqcLZhjmLe1ZYZYVrgtjOWKoelcA6k44zxXJPKUSY6qgTYljYtsDm63c9dx_F7A2nS-SqbDzUBxk3SRNZN_qFhzXFUCCVrJWqcUblHbRxTiuD0OvrBxK0mWO9c6pX-c6l3LjUmOrvMjTeHHSZZ07togvXpv5s2TFFOWObu9xxkNz8eok7W54nQ-ZhF6m70x1b9Al6pjXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559679570</pqid></control><display><type>article</type><title>Modelling carbon emissions in electric systems</title><source>Elsevier ScienceDirect Journals</source><creator>Lau, E.T. ; Yang, Q. ; Forbes, A.B. ; Wright, P. ; Livina, V.N.</creator><creatorcontrib>Lau, E.T. ; Yang, Q. ; Forbes, A.B. ; Wright, P. ; Livina, V.N.</creatorcontrib><description>•We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble Kalman Filter to forecast energy data in these case studies. We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2014.01.045</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Carbon ; Carbon emissions ; Computer simulation ; Electricity ; Emission analysis ; Energy ; Energy consumption ; Energy system modelling ; Ensemble Kalman Filter ; Estimates ; Exact sciences and technology ; Mathematical analysis ; Modelling</subject><ispartof>Energy conversion and management, 2014-04, Vol.80, p.573-581</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-67d1c9efc83f204d7c3a5abe4cdac29f065ffe6f43344cd69f235d295ecb28be3</citedby><cites>FETCH-LOGICAL-c449t-67d1c9efc83f204d7c3a5abe4cdac29f065ffe6f43344cd69f235d295ecb28be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890414000909$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28392413$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, E.T.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Forbes, A.B.</creatorcontrib><creatorcontrib>Wright, P.</creatorcontrib><creatorcontrib>Livina, V.N.</creatorcontrib><title>Modelling carbon emissions in electric systems</title><title>Energy conversion and management</title><description>•We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble Kalman Filter to forecast energy data in these case studies. We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies.</description><subject>Applied sciences</subject><subject>Carbon</subject><subject>Carbon emissions</subject><subject>Computer simulation</subject><subject>Electricity</subject><subject>Emission analysis</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy system modelling</subject><subject>Ensemble Kalman Filter</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKt_QfYieNk1793clOILKl70HLLZiaTsZmuyFfrvTWn12tMwwzevD6FrgiuCibxbVRDsGAYTKooJrzCpMBcnaEaaWpWU0voUzTBRsmwU5ufoIqUVxpgJLGeoehs76HsfvgprYjuGAgafkh9DKnxOerBT9LZI2zTBkC7RmTN9gqtDnKPPp8ePxUu5fH9-XTwsS8u5mkpZd8QqcLZhjmLe1ZYZYVrgtjOWKoelcA6k44zxXJPKUSY6qgTYljYtsDm63c9dx_F7A2nS-SqbDzUBxk3SRNZN_qFhzXFUCCVrJWqcUblHbRxTiuD0OvrBxK0mWO9c6pX-c6l3LjUmOrvMjTeHHSZZ07togvXpv5s2TFFOWObu9xxkNz8eok7W54nQ-ZhF6m70x1b9Al6pjXk</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Lau, E.T.</creator><creator>Yang, Q.</creator><creator>Forbes, A.B.</creator><creator>Wright, P.</creator><creator>Livina, V.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140401</creationdate><title>Modelling carbon emissions in electric systems</title><author>Lau, E.T. ; Yang, Q. ; Forbes, A.B. ; Wright, P. ; Livina, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-67d1c9efc83f204d7c3a5abe4cdac29f065ffe6f43344cd69f235d295ecb28be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Carbon</topic><topic>Carbon emissions</topic><topic>Computer simulation</topic><topic>Electricity</topic><topic>Emission analysis</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy system modelling</topic><topic>Ensemble Kalman Filter</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, E.T.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Forbes, A.B.</creatorcontrib><creatorcontrib>Wright, P.</creatorcontrib><creatorcontrib>Livina, V.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, E.T.</au><au>Yang, Q.</au><au>Forbes, A.B.</au><au>Wright, P.</au><au>Livina, V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling carbon emissions in electric systems</atitle><jtitle>Energy conversion and management</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>80</volume><spage>573</spage><epage>581</epage><pages>573-581</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>•We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble Kalman Filter to forecast energy data in these case studies. We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2014.01.045</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2014-04, Vol.80, p.573-581
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_1678000838
source Elsevier ScienceDirect Journals
subjects Applied sciences
Carbon
Carbon emissions
Computer simulation
Electricity
Emission analysis
Energy
Energy consumption
Energy system modelling
Ensemble Kalman Filter
Estimates
Exact sciences and technology
Mathematical analysis
Modelling
title Modelling carbon emissions in electric systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20carbon%20emissions%20in%20electric%20systems&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Lau,%20E.T.&rft.date=2014-04-01&rft.volume=80&rft.spage=573&rft.epage=581&rft.pages=573-581&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2014.01.045&rft_dat=%3Cproquest_cross%3E1559679570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559679570&rft_id=info:pmid/&rft_els_id=S0196890414000909&rfr_iscdi=true