Modelling carbon emissions in electric systems
•We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble K...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2014-04, Vol.80, p.573-581 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 581 |
---|---|
container_issue | |
container_start_page | 573 |
container_title | Energy conversion and management |
container_volume | 80 |
creator | Lau, E.T. Yang, Q. Forbes, A.B. Wright, P. Livina, V.N. |
description | •We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble Kalman Filter to forecast energy data in these case studies.
We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies. |
doi_str_mv | 10.1016/j.enconman.2014.01.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678000838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890414000909</els_id><sourcerecordid>1559679570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-67d1c9efc83f204d7c3a5abe4cdac29f065ffe6f43344cd69f235d295ecb28be3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKt_QfYieNk1793clOILKl70HLLZiaTsZmuyFfrvTWn12tMwwzevD6FrgiuCibxbVRDsGAYTKooJrzCpMBcnaEaaWpWU0voUzTBRsmwU5ufoIqUVxpgJLGeoehs76HsfvgprYjuGAgafkh9DKnxOerBT9LZI2zTBkC7RmTN9gqtDnKPPp8ePxUu5fH9-XTwsS8u5mkpZd8QqcLZhjmLe1ZYZYVrgtjOWKoelcA6k44zxXJPKUSY6qgTYljYtsDm63c9dx_F7A2nS-SqbDzUBxk3SRNZN_qFhzXFUCCVrJWqcUblHbRxTiuD0OvrBxK0mWO9c6pX-c6l3LjUmOrvMjTeHHSZZ07togvXpv5s2TFFOWObu9xxkNz8eok7W54nQ-ZhF6m70x1b9Al6pjXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559679570</pqid></control><display><type>article</type><title>Modelling carbon emissions in electric systems</title><source>Elsevier ScienceDirect Journals</source><creator>Lau, E.T. ; Yang, Q. ; Forbes, A.B. ; Wright, P. ; Livina, V.N.</creator><creatorcontrib>Lau, E.T. ; Yang, Q. ; Forbes, A.B. ; Wright, P. ; Livina, V.N.</creatorcontrib><description>•We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble Kalman Filter to forecast energy data in these case studies.
We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2014.01.045</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Carbon ; Carbon emissions ; Computer simulation ; Electricity ; Emission analysis ; Energy ; Energy consumption ; Energy system modelling ; Ensemble Kalman Filter ; Estimates ; Exact sciences and technology ; Mathematical analysis ; Modelling</subject><ispartof>Energy conversion and management, 2014-04, Vol.80, p.573-581</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-67d1c9efc83f204d7c3a5abe4cdac29f065ffe6f43344cd69f235d295ecb28be3</citedby><cites>FETCH-LOGICAL-c449t-67d1c9efc83f204d7c3a5abe4cdac29f065ffe6f43344cd69f235d295ecb28be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890414000909$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28392413$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, E.T.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Forbes, A.B.</creatorcontrib><creatorcontrib>Wright, P.</creatorcontrib><creatorcontrib>Livina, V.N.</creatorcontrib><title>Modelling carbon emissions in electric systems</title><title>Energy conversion and management</title><description>•We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble Kalman Filter to forecast energy data in these case studies.
We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies.</description><subject>Applied sciences</subject><subject>Carbon</subject><subject>Carbon emissions</subject><subject>Computer simulation</subject><subject>Electricity</subject><subject>Emission analysis</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy system modelling</subject><subject>Ensemble Kalman Filter</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKt_QfYieNk1793clOILKl70HLLZiaTsZmuyFfrvTWn12tMwwzevD6FrgiuCibxbVRDsGAYTKooJrzCpMBcnaEaaWpWU0voUzTBRsmwU5ufoIqUVxpgJLGeoehs76HsfvgprYjuGAgafkh9DKnxOerBT9LZI2zTBkC7RmTN9gqtDnKPPp8ePxUu5fH9-XTwsS8u5mkpZd8QqcLZhjmLe1ZYZYVrgtjOWKoelcA6k44zxXJPKUSY6qgTYljYtsDm63c9dx_F7A2nS-SqbDzUBxk3SRNZN_qFhzXFUCCVrJWqcUblHbRxTiuD0OvrBxK0mWO9c6pX-c6l3LjUmOrvMjTeHHSZZ07togvXpv5s2TFFOWObu9xxkNz8eok7W54nQ-ZhF6m70x1b9Al6pjXk</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Lau, E.T.</creator><creator>Yang, Q.</creator><creator>Forbes, A.B.</creator><creator>Wright, P.</creator><creator>Livina, V.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140401</creationdate><title>Modelling carbon emissions in electric systems</title><author>Lau, E.T. ; Yang, Q. ; Forbes, A.B. ; Wright, P. ; Livina, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-67d1c9efc83f204d7c3a5abe4cdac29f065ffe6f43344cd69f235d295ecb28be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Carbon</topic><topic>Carbon emissions</topic><topic>Computer simulation</topic><topic>Electricity</topic><topic>Emission analysis</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy system modelling</topic><topic>Ensemble Kalman Filter</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, E.T.</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Forbes, A.B.</creatorcontrib><creatorcontrib>Wright, P.</creatorcontrib><creatorcontrib>Livina, V.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, E.T.</au><au>Yang, Q.</au><au>Forbes, A.B.</au><au>Wright, P.</au><au>Livina, V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling carbon emissions in electric systems</atitle><jtitle>Energy conversion and management</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>80</volume><spage>573</spage><epage>581</epage><pages>573-581</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>•We model carbon emissions in electric systems.•We estimate emissions in generated and consumed energy with UK carbon factors.•We model demand profiles with novel function based on hyperbolic tangents.•We study datasets of UK Elexon database, Brunel PV system and Irish SmartGrid.•We apply Ensemble Kalman Filter to forecast energy data in these case studies.
We model energy consumption of network electricity and compute Carbon emissions (CE) based on obtained energy data. We review various models of electricity consumption and propose an adaptive seasonal model based on the Hyperbolic tangent function (HTF). We incorporate HTF to define seasonal and daily trends of electricity demand. We then build a stochastic model that combines the trends and white noise component and the resulting simulations are estimated using Ensemble Kalman Filter (EnKF), which provides ensemble simulations of groups of electricity consumers; similarly, we estimate carbon emissions from electricity generators. Three case studies of electricity generation and consumption are modelled: Brunel University photovoltaic generation data, Elexon national electricity generation data (various fuel types) and Irish smart grid data, with ensemble estimations by EnKF and computation of carbon emissions. We show the flexibility of HTF-based functions for modelling realistic cycles of energy consumption, the efficiency of EnKF in ensemble estimation of energy consumption and generation, and report the obtained estimates of the carbon emissions in the considered case studies.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2014.01.045</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2014-04, Vol.80, p.573-581 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_miscellaneous_1678000838 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Carbon Carbon emissions Computer simulation Electricity Emission analysis Energy Energy consumption Energy system modelling Ensemble Kalman Filter Estimates Exact sciences and technology Mathematical analysis Modelling |
title | Modelling carbon emissions in electric systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20carbon%20emissions%20in%20electric%20systems&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Lau,%20E.T.&rft.date=2014-04-01&rft.volume=80&rft.spage=573&rft.epage=581&rft.pages=573-581&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2014.01.045&rft_dat=%3Cproquest_cross%3E1559679570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559679570&rft_id=info:pmid/&rft_els_id=S0196890414000909&rfr_iscdi=true |