Engineered cell instructive matrices for fetal membrane healing
[Display omitted] Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) occurs in 6–45% of the cases after fetoscopic procedures, posing a significant threat to fetal survival and well-being. The number of diagnostic and therapeutic prenatal interventions available is increasing, thus dev...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2015-03, Vol.15, p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Acta biomaterialia |
container_volume | 15 |
creator | Kivelio, A. Ochsenbein-Koelble, N. Zimmermann, R. Ehrbar, M. |
description | [Display omitted]
Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) occurs in 6–45% of the cases after fetoscopic procedures, posing a significant threat to fetal survival and well-being. The number of diagnostic and therapeutic prenatal interventions available is increasing, thus developing treatment options for iPPROM is becoming more important than ever before. Fetal membranes exhibit very restricted regeneration and little is known about factors which might modulate their healing potential, rendering various materials and strategies to seal or heal fetal membranes pursued over the past decades relatively fruitless. Additionally, biocompatible materials with tunable in vivo stability and mechanical and biological properties have not been available. Using poly(ethylene glycol)-based biomimetic matrices, we provide evidence that, upon presentation of appropriate biological cues in three dimensions, mesenchymal progenitor cells from the amnion can be mobilized, induced to proliferate and supported in maintaining their native extracellular matrix production, thus creating a suitable environment for healing to take place. These data suggest that engineering materials with defined mechanical and biochemical properties and the ability to present migration- and proliferation-inducing factors, such as platelet-derived growth factor, basic fibroblast growth factor or epidermal growth factor, could be key in resolving the clinical problem of iPPROM and allowing the field of fetal surgery to move forward. |
doi_str_mv | 10.1016/j.actbio.2014.12.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677999258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706114005753</els_id><sourcerecordid>1656043951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-346c1045fb889d7fc3950be734ae441c18adb54fb3803ba0e7eae6baf5c1f2253</originalsourceid><addsrcrecordid>eNqNkclKBDEQhoMo7m8g0kcv3aaydNIXRWRcQPCi55CkK5qhF016BN_eHkY9iqeqw1dVP_URcgK0Agr1-bKyfnJxrBgFUQGrKMAW2QetdKlkrbfnXglWKlrDHjnIeUkp18D0LtljUvKactgnl4vhJQ6ICdvCY9cVcchTWvkpfmDR2ylFj7kIYyoCTrYreuxdsgMWr2i7OLwckZ1gu4zH3_WQPN8snq7vyofH2_vrq4fSSy6nkovaAxUyOK2bVgXPG0kdKi4sCgEetG2dFMFxTbmzFBVarJ0N0kNgTPJDcrbZ-5bG9xXmyfQxrwPPWcZVNlAr1TQNk_o_KOe64fI_W2VNxZwVZlRsUJ_GnBMG85Zib9OnAWrWQszSbISYtRADzMxC5rHT7wsr12P7O_RjYAYuNgDO3_uImEz2EQePbUzoJ9OO8e8LXzBUnQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656043951</pqid></control><display><type>article</type><title>Engineered cell instructive matrices for fetal membrane healing</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kivelio, A. ; Ochsenbein-Koelble, N. ; Zimmermann, R. ; Ehrbar, M.</creator><creatorcontrib>Kivelio, A. ; Ochsenbein-Koelble, N. ; Zimmermann, R. ; Ehrbar, M.</creatorcontrib><description>[Display omitted]
Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) occurs in 6–45% of the cases after fetoscopic procedures, posing a significant threat to fetal survival and well-being. The number of diagnostic and therapeutic prenatal interventions available is increasing, thus developing treatment options for iPPROM is becoming more important than ever before. Fetal membranes exhibit very restricted regeneration and little is known about factors which might modulate their healing potential, rendering various materials and strategies to seal or heal fetal membranes pursued over the past decades relatively fruitless. Additionally, biocompatible materials with tunable in vivo stability and mechanical and biological properties have not been available. Using poly(ethylene glycol)-based biomimetic matrices, we provide evidence that, upon presentation of appropriate biological cues in three dimensions, mesenchymal progenitor cells from the amnion can be mobilized, induced to proliferate and supported in maintaining their native extracellular matrix production, thus creating a suitable environment for healing to take place. These data suggest that engineering materials with defined mechanical and biochemical properties and the ability to present migration- and proliferation-inducing factors, such as platelet-derived growth factor, basic fibroblast growth factor or epidermal growth factor, could be key in resolving the clinical problem of iPPROM and allowing the field of fetal surgery to move forward.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2014.12.011</identifier><identifier>PMID: 25536031</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amnion - cytology ; Biocompatibility ; Biological ; Cell Movement - drug effects ; Cells, Cultured ; Diagnostic systems ; Extracellular Matrix - metabolism ; Female ; Fetal membrane ; Fetal Membranes, Premature Rupture - pathology ; Growth factor ; Growth factors ; Healing ; Humans ; Intercellular Signaling Peptides and Proteins - pharmacology ; Membranes ; Mesenchymal Stromal Cells - cytology ; PEG ; Pregnancy ; Rendering ; Seals ; Synthetic matrix ; Three dimensional ; Tissue Engineering - methods ; Wound Healing - drug effects</subject><ispartof>Acta biomaterialia, 2015-03, Vol.15, p.1-10</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-346c1045fb889d7fc3950be734ae441c18adb54fb3803ba0e7eae6baf5c1f2253</citedby><cites>FETCH-LOGICAL-c535t-346c1045fb889d7fc3950be734ae441c18adb54fb3803ba0e7eae6baf5c1f2253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2014.12.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25536031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kivelio, A.</creatorcontrib><creatorcontrib>Ochsenbein-Koelble, N.</creatorcontrib><creatorcontrib>Zimmermann, R.</creatorcontrib><creatorcontrib>Ehrbar, M.</creatorcontrib><title>Engineered cell instructive matrices for fetal membrane healing</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) occurs in 6–45% of the cases after fetoscopic procedures, posing a significant threat to fetal survival and well-being. The number of diagnostic and therapeutic prenatal interventions available is increasing, thus developing treatment options for iPPROM is becoming more important than ever before. Fetal membranes exhibit very restricted regeneration and little is known about factors which might modulate their healing potential, rendering various materials and strategies to seal or heal fetal membranes pursued over the past decades relatively fruitless. Additionally, biocompatible materials with tunable in vivo stability and mechanical and biological properties have not been available. Using poly(ethylene glycol)-based biomimetic matrices, we provide evidence that, upon presentation of appropriate biological cues in three dimensions, mesenchymal progenitor cells from the amnion can be mobilized, induced to proliferate and supported in maintaining their native extracellular matrix production, thus creating a suitable environment for healing to take place. These data suggest that engineering materials with defined mechanical and biochemical properties and the ability to present migration- and proliferation-inducing factors, such as platelet-derived growth factor, basic fibroblast growth factor or epidermal growth factor, could be key in resolving the clinical problem of iPPROM and allowing the field of fetal surgery to move forward.</description><subject>Amnion - cytology</subject><subject>Biocompatibility</subject><subject>Biological</subject><subject>Cell Movement - drug effects</subject><subject>Cells, Cultured</subject><subject>Diagnostic systems</subject><subject>Extracellular Matrix - metabolism</subject><subject>Female</subject><subject>Fetal membrane</subject><subject>Fetal Membranes, Premature Rupture - pathology</subject><subject>Growth factor</subject><subject>Growth factors</subject><subject>Healing</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - pharmacology</subject><subject>Membranes</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>PEG</subject><subject>Pregnancy</subject><subject>Rendering</subject><subject>Seals</subject><subject>Synthetic matrix</subject><subject>Three dimensional</subject><subject>Tissue Engineering - methods</subject><subject>Wound Healing - drug effects</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkclKBDEQhoMo7m8g0kcv3aaydNIXRWRcQPCi55CkK5qhF016BN_eHkY9iqeqw1dVP_URcgK0Agr1-bKyfnJxrBgFUQGrKMAW2QetdKlkrbfnXglWKlrDHjnIeUkp18D0LtljUvKactgnl4vhJQ6ICdvCY9cVcchTWvkpfmDR2ylFj7kIYyoCTrYreuxdsgMWr2i7OLwckZ1gu4zH3_WQPN8snq7vyofH2_vrq4fSSy6nkovaAxUyOK2bVgXPG0kdKi4sCgEetG2dFMFxTbmzFBVarJ0N0kNgTPJDcrbZ-5bG9xXmyfQxrwPPWcZVNlAr1TQNk_o_KOe64fI_W2VNxZwVZlRsUJ_GnBMG85Zib9OnAWrWQszSbISYtRADzMxC5rHT7wsr12P7O_RjYAYuNgDO3_uImEz2EQePbUzoJ9OO8e8LXzBUnQA</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Kivelio, A.</creator><creator>Ochsenbein-Koelble, N.</creator><creator>Zimmermann, R.</creator><creator>Ehrbar, M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>Engineered cell instructive matrices for fetal membrane healing</title><author>Kivelio, A. ; Ochsenbein-Koelble, N. ; Zimmermann, R. ; Ehrbar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-346c1045fb889d7fc3950be734ae441c18adb54fb3803ba0e7eae6baf5c1f2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amnion - cytology</topic><topic>Biocompatibility</topic><topic>Biological</topic><topic>Cell Movement - drug effects</topic><topic>Cells, Cultured</topic><topic>Diagnostic systems</topic><topic>Extracellular Matrix - metabolism</topic><topic>Female</topic><topic>Fetal membrane</topic><topic>Fetal Membranes, Premature Rupture - pathology</topic><topic>Growth factor</topic><topic>Growth factors</topic><topic>Healing</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - pharmacology</topic><topic>Membranes</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>PEG</topic><topic>Pregnancy</topic><topic>Rendering</topic><topic>Seals</topic><topic>Synthetic matrix</topic><topic>Three dimensional</topic><topic>Tissue Engineering - methods</topic><topic>Wound Healing - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kivelio, A.</creatorcontrib><creatorcontrib>Ochsenbein-Koelble, N.</creatorcontrib><creatorcontrib>Zimmermann, R.</creatorcontrib><creatorcontrib>Ehrbar, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kivelio, A.</au><au>Ochsenbein-Koelble, N.</au><au>Zimmermann, R.</au><au>Ehrbar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered cell instructive matrices for fetal membrane healing</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-03</date><risdate>2015</risdate><volume>15</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Iatrogenic preterm prelabour rupture of fetal membranes (iPPROM) occurs in 6–45% of the cases after fetoscopic procedures, posing a significant threat to fetal survival and well-being. The number of diagnostic and therapeutic prenatal interventions available is increasing, thus developing treatment options for iPPROM is becoming more important than ever before. Fetal membranes exhibit very restricted regeneration and little is known about factors which might modulate their healing potential, rendering various materials and strategies to seal or heal fetal membranes pursued over the past decades relatively fruitless. Additionally, biocompatible materials with tunable in vivo stability and mechanical and biological properties have not been available. Using poly(ethylene glycol)-based biomimetic matrices, we provide evidence that, upon presentation of appropriate biological cues in three dimensions, mesenchymal progenitor cells from the amnion can be mobilized, induced to proliferate and supported in maintaining their native extracellular matrix production, thus creating a suitable environment for healing to take place. These data suggest that engineering materials with defined mechanical and biochemical properties and the ability to present migration- and proliferation-inducing factors, such as platelet-derived growth factor, basic fibroblast growth factor or epidermal growth factor, could be key in resolving the clinical problem of iPPROM and allowing the field of fetal surgery to move forward.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25536031</pmid><doi>10.1016/j.actbio.2014.12.011</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2015-03, Vol.15, p.1-10 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677999258 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Amnion - cytology Biocompatibility Biological Cell Movement - drug effects Cells, Cultured Diagnostic systems Extracellular Matrix - metabolism Female Fetal membrane Fetal Membranes, Premature Rupture - pathology Growth factor Growth factors Healing Humans Intercellular Signaling Peptides and Proteins - pharmacology Membranes Mesenchymal Stromal Cells - cytology PEG Pregnancy Rendering Seals Synthetic matrix Three dimensional Tissue Engineering - methods Wound Healing - drug effects |
title | Engineered cell instructive matrices for fetal membrane healing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20cell%20instructive%20matrices%20for%20fetal%20membrane%20healing&rft.jtitle=Acta%20biomaterialia&rft.au=Kivelio,%20A.&rft.date=2015-03&rft.volume=15&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2014.12.011&rft_dat=%3Cproquest_cross%3E1656043951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656043951&rft_id=info:pmid/25536031&rft_els_id=S1742706114005753&rfr_iscdi=true |