Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells
The electrode fabrication and resulting microstructure are the main determinates of the performance of alkaline anion exchange membrane fuel cells (AAEMFCs). In the present work, the electrode microstructure is adjusted by the ionomer content in catalyst layers as well as the dispersion solvent for...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-12, Vol.267, p.39-47 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | |
container_start_page | 39 |
container_title | Journal of power sources |
container_volume | 267 |
creator | Yang, Donglei Yu, Hongmei Li, Guangfu Zhao, Yun Liu, Yanxi Zhang, Changkun Song, Wei Shao, Zhigang |
description | The electrode fabrication and resulting microstructure are the main determinates of the performance of alkaline anion exchange membrane fuel cells (AAEMFCs). In the present work, the electrode microstructure is adjusted by the ionomer content in catalyst layers as well as the dispersion solvent for catalyst inks. The ionomer content shows a strong influence on the cell active, ohmic and mass-diffusion polarization losses. Especially, an in-suit proof for the ionomer as the hydroxide conductor is first given by the cell cycle voltammogram, and the optimum content is 20 wt.%. Meanwhile, it is found that the ionomer either dissolves in the dielectric constant ɛ = 18.3–24.3 solutions (including ethanol, propanol and isopropanol) or disperses in the n-butyl acetate (ɛ = 5.01) colloid. Compared with these electrodes using the solution method, the colloidal electrode tends to form the larger catalyst/ionomer agglomerates, increased pore volume and pore diameter, continuous ionomer networks for hydroxide conduction, and correspondingly decreased ohmic and mass-diffusion polarization losses. Ultimately, when employing the optimum ionomer content and the colloid approach, the highest peak power density we achieved in AAEMFC is 407 mW cm−2 at 50 °C, which can be taken as a considerable success in comparison to the current results in publications.
[Display omitted]
•Microstructure of electrode with anion-exchange ionomer is studied and improved.•The colloidal anion-exchange ionomer is prepared and evaluated for the first time.•A high performance of 407 mW cm−2 in the alkaline fuel cell is obtained. |
doi_str_mv | 10.1016/j.jpowsour.2014.04.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677999063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314005436</els_id><sourcerecordid>1567081729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-b3c1ace4975c6139a9e63b85bcca66d41a735dc22cc43f0cbccd483e8d9b1ca63</originalsourceid><addsrcrecordid>eNqFkF1L7DAQhoMcwT3qX5DcCN50T9I0SXuniB8HFs6NXsd0Ot3N2jZr0vrx701ZPbfCQGB4Zt7JQ8gZZ0vOuPqzXW53_i36KSxzxoslSyXFAVnwUoss11L-IgsmdJlpLcUR-R3jljHGuWYL8nTrBqS9g-DjGCYYp4DUt3Tj1hu6w9D60NsBkGKHMAbfIHUDtd2z7eZBOzg_UHyHjR3WaQ_2dbCp307YUcCuiyfksLVdxNOv95g83t48XN9nq393f6-vVhkUhRyzWgC3gEWlJSguKluhEnUpawCrVFNwq4VsIM8BCtEySP2mKAWWTVXzhIhjcrHfuwv-ZcI4mt7F-YJ0jp-i4UrrqqqYEj-jUmlWcp1XCVV7dPYTA7ZmF1xvw4fhzMz2zdZ82zezfcNSyTnj_CvDRrBdm6yAi_-n81Kmn5YycZd7DpObV4fBRHCYhDcuJOGm8e6nqE_ikqDX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567081729</pqid></control><display><type>article</type><title>Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Donglei ; Yu, Hongmei ; Li, Guangfu ; Zhao, Yun ; Liu, Yanxi ; Zhang, Changkun ; Song, Wei ; Shao, Zhigang</creator><creatorcontrib>Yang, Donglei ; Yu, Hongmei ; Li, Guangfu ; Zhao, Yun ; Liu, Yanxi ; Zhang, Changkun ; Song, Wei ; Shao, Zhigang</creatorcontrib><description>The electrode fabrication and resulting microstructure are the main determinates of the performance of alkaline anion exchange membrane fuel cells (AAEMFCs). In the present work, the electrode microstructure is adjusted by the ionomer content in catalyst layers as well as the dispersion solvent for catalyst inks. The ionomer content shows a strong influence on the cell active, ohmic and mass-diffusion polarization losses. Especially, an in-suit proof for the ionomer as the hydroxide conductor is first given by the cell cycle voltammogram, and the optimum content is 20 wt.%. Meanwhile, it is found that the ionomer either dissolves in the dielectric constant ɛ = 18.3–24.3 solutions (including ethanol, propanol and isopropanol) or disperses in the n-butyl acetate (ɛ = 5.01) colloid. Compared with these electrodes using the solution method, the colloidal electrode tends to form the larger catalyst/ionomer agglomerates, increased pore volume and pore diameter, continuous ionomer networks for hydroxide conduction, and correspondingly decreased ohmic and mass-diffusion polarization losses. Ultimately, when employing the optimum ionomer content and the colloid approach, the highest peak power density we achieved in AAEMFC is 407 mW cm−2 at 50 °C, which can be taken as a considerable success in comparison to the current results in publications.
[Display omitted]
•Microstructure of electrode with anion-exchange ionomer is studied and improved.•The colloidal anion-exchange ionomer is prepared and evaluated for the first time.•A high performance of 407 mW cm−2 in the alkaline fuel cell is obtained.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.04.053</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alkaline anion exchange membrane fuel cell ; Applied sciences ; Catalysts ; Colloids ; Direct energy conversion and energy accumulation ; Dispersion solvent ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrode microstructure ; Electrodes ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Ethyl alcohol ; Exact sciences and technology ; Fuel cells ; Ion exchangers ; Ionomer content ; Ionomers ; Microstructure ; Ohmic ; Three phase boundary</subject><ispartof>Journal of power sources, 2014-12, Vol.267, p.39-47</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-b3c1ace4975c6139a9e63b85bcca66d41a735dc22cc43f0cbccd483e8d9b1ca63</citedby><cites>FETCH-LOGICAL-c445t-b3c1ace4975c6139a9e63b85bcca66d41a735dc22cc43f0cbccd483e8d9b1ca63</cites><orcidid>0000-0002-1513-2466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775314005436$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28597585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Donglei</creatorcontrib><creatorcontrib>Yu, Hongmei</creatorcontrib><creatorcontrib>Li, Guangfu</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Liu, Yanxi</creatorcontrib><creatorcontrib>Zhang, Changkun</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Shao, Zhigang</creatorcontrib><title>Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells</title><title>Journal of power sources</title><description>The electrode fabrication and resulting microstructure are the main determinates of the performance of alkaline anion exchange membrane fuel cells (AAEMFCs). In the present work, the electrode microstructure is adjusted by the ionomer content in catalyst layers as well as the dispersion solvent for catalyst inks. The ionomer content shows a strong influence on the cell active, ohmic and mass-diffusion polarization losses. Especially, an in-suit proof for the ionomer as the hydroxide conductor is first given by the cell cycle voltammogram, and the optimum content is 20 wt.%. Meanwhile, it is found that the ionomer either dissolves in the dielectric constant ɛ = 18.3–24.3 solutions (including ethanol, propanol and isopropanol) or disperses in the n-butyl acetate (ɛ = 5.01) colloid. Compared with these electrodes using the solution method, the colloidal electrode tends to form the larger catalyst/ionomer agglomerates, increased pore volume and pore diameter, continuous ionomer networks for hydroxide conduction, and correspondingly decreased ohmic and mass-diffusion polarization losses. Ultimately, when employing the optimum ionomer content and the colloid approach, the highest peak power density we achieved in AAEMFC is 407 mW cm−2 at 50 °C, which can be taken as a considerable success in comparison to the current results in publications.
[Display omitted]
•Microstructure of electrode with anion-exchange ionomer is studied and improved.•The colloidal anion-exchange ionomer is prepared and evaluated for the first time.•A high performance of 407 mW cm−2 in the alkaline fuel cell is obtained.</description><subject>Alkaline anion exchange membrane fuel cell</subject><subject>Applied sciences</subject><subject>Catalysts</subject><subject>Colloids</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Dispersion solvent</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrode microstructure</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Ethyl alcohol</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Ion exchangers</subject><subject>Ionomer content</subject><subject>Ionomers</subject><subject>Microstructure</subject><subject>Ohmic</subject><subject>Three phase boundary</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkF1L7DAQhoMcwT3qX5DcCN50T9I0SXuniB8HFs6NXsd0Ot3N2jZr0vrx701ZPbfCQGB4Zt7JQ8gZZ0vOuPqzXW53_i36KSxzxoslSyXFAVnwUoss11L-IgsmdJlpLcUR-R3jljHGuWYL8nTrBqS9g-DjGCYYp4DUt3Tj1hu6w9D60NsBkGKHMAbfIHUDtd2z7eZBOzg_UHyHjR3WaQ_2dbCp307YUcCuiyfksLVdxNOv95g83t48XN9nq393f6-vVhkUhRyzWgC3gEWlJSguKluhEnUpawCrVFNwq4VsIM8BCtEySP2mKAWWTVXzhIhjcrHfuwv-ZcI4mt7F-YJ0jp-i4UrrqqqYEj-jUmlWcp1XCVV7dPYTA7ZmF1xvw4fhzMz2zdZ82zezfcNSyTnj_CvDRrBdm6yAi_-n81Kmn5YycZd7DpObV4fBRHCYhDcuJOGm8e6nqE_ikqDX</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Yang, Donglei</creator><creator>Yu, Hongmei</creator><creator>Li, Guangfu</creator><creator>Zhao, Yun</creator><creator>Liu, Yanxi</creator><creator>Zhang, Changkun</creator><creator>Song, Wei</creator><creator>Shao, Zhigang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1513-2466</orcidid></search><sort><creationdate>20141201</creationdate><title>Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells</title><author>Yang, Donglei ; Yu, Hongmei ; Li, Guangfu ; Zhao, Yun ; Liu, Yanxi ; Zhang, Changkun ; Song, Wei ; Shao, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-b3c1ace4975c6139a9e63b85bcca66d41a735dc22cc43f0cbccd483e8d9b1ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alkaline anion exchange membrane fuel cell</topic><topic>Applied sciences</topic><topic>Catalysts</topic><topic>Colloids</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Dispersion solvent</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrode microstructure</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Ethyl alcohol</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Ion exchangers</topic><topic>Ionomer content</topic><topic>Ionomers</topic><topic>Microstructure</topic><topic>Ohmic</topic><topic>Three phase boundary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Donglei</creatorcontrib><creatorcontrib>Yu, Hongmei</creatorcontrib><creatorcontrib>Li, Guangfu</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Liu, Yanxi</creatorcontrib><creatorcontrib>Zhang, Changkun</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Shao, Zhigang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Donglei</au><au>Yu, Hongmei</au><au>Li, Guangfu</au><au>Zhao, Yun</au><au>Liu, Yanxi</au><au>Zhang, Changkun</au><au>Song, Wei</au><au>Shao, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>267</volume><spage>39</spage><epage>47</epage><pages>39-47</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The electrode fabrication and resulting microstructure are the main determinates of the performance of alkaline anion exchange membrane fuel cells (AAEMFCs). In the present work, the electrode microstructure is adjusted by the ionomer content in catalyst layers as well as the dispersion solvent for catalyst inks. The ionomer content shows a strong influence on the cell active, ohmic and mass-diffusion polarization losses. Especially, an in-suit proof for the ionomer as the hydroxide conductor is first given by the cell cycle voltammogram, and the optimum content is 20 wt.%. Meanwhile, it is found that the ionomer either dissolves in the dielectric constant ɛ = 18.3–24.3 solutions (including ethanol, propanol and isopropanol) or disperses in the n-butyl acetate (ɛ = 5.01) colloid. Compared with these electrodes using the solution method, the colloidal electrode tends to form the larger catalyst/ionomer agglomerates, increased pore volume and pore diameter, continuous ionomer networks for hydroxide conduction, and correspondingly decreased ohmic and mass-diffusion polarization losses. Ultimately, when employing the optimum ionomer content and the colloid approach, the highest peak power density we achieved in AAEMFC is 407 mW cm−2 at 50 °C, which can be taken as a considerable success in comparison to the current results in publications.
[Display omitted]
•Microstructure of electrode with anion-exchange ionomer is studied and improved.•The colloidal anion-exchange ionomer is prepared and evaluated for the first time.•A high performance of 407 mW cm−2 in the alkaline fuel cell is obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.04.053</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1513-2466</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-12, Vol.267, p.39-47 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677999063 |
source | Elsevier ScienceDirect Journals |
subjects | Alkaline anion exchange membrane fuel cell Applied sciences Catalysts Colloids Direct energy conversion and energy accumulation Dispersion solvent Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrode microstructure Electrodes Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Ethyl alcohol Exact sciences and technology Fuel cells Ion exchangers Ionomer content Ionomers Microstructure Ohmic Three phase boundary |
title | Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20microstructure%20of%20high%20performance%20electrode%20in%20alkaline%20anion%20exchange%20membrane%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Yang,%20Donglei&rft.date=2014-12-01&rft.volume=267&rft.spage=39&rft.epage=47&rft.pages=39-47&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.04.053&rft_dat=%3Cproquest_cross%3E1567081729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567081729&rft_id=info:pmid/&rft_els_id=S0378775314005436&rfr_iscdi=true |